In the hospital of the near future, technology plays a key part in streamlining and enhancing the patient’s experience and delivering high quality care: from wireless physiological monitors to virtual reality entertainment to patients’ health information at their fingertips.

Robots roam the hospital—delivering medication, transporting patients and cleaning. Artificial intelligence (AI), predictive analytics and natural language processing automatically transcribe symptoms and diagnose ailments with a high degree of accuracy, while machine learning algorithms constantly improve the system’s ability to detect and treat medical conditions. Human healthcare providers have been all but eliminated from the equation. It’s the perfect healthcare system – or is it?”

“Medicine is both an art and a science. In order to best serve patients, technology needs to support care providers in doing the things that machines cannot do.”

Depending on who you talk to, this is either a futuristic dream or a technological nightmare.  While it is true that our healthcare system could benefit greatly from many of the technologies mentioned above, there is one key element missing: the art of human compassion and caring that is necessary for a truly patient-centric approach to healthcare. Medicine is both an art and a science. In order to best serve patients, technology needs to support care providers in doing the things that machines cannot do. The art of medicine is not just about finding a diagnosis or treating an ailment based on a universally prescribed regimen; it extends into the social realm where human touch, advocacy and empathy are arguably equally important. Medicine is not a one-size-fits-all solution. Cultural norms, family dynamics, genetics, belief systems, and previous experiences all play an important role in patient decision-making. The way in which a provider navigates through these aspects of care greatly influences patients’ autonomy and quality of life. As yet, there is no way to duplicate the complexity of these influences in a machine. There is no such thing as digital compassion.

This isn’t to say that AI doesn’t have tremendous potential to radically transform healthcare for the better. There is no doubt that more accurate diagnoses, fewer medical errors, streamlined documentation, and more nuanced interpretation of large data sets could benefit patients, providers and society as a whole. But maintaining human connection and empathy in a high-tech healthcare system requires careful consideration of how AI and other technologies are implemented – and how they may impact the patient-provider relationship.

Here are several ways AI can support a patient-centered care environment, today and in the future.

Clinical Decision Support

A key way AI can enhance a patient-centered environment is through supporting clinicians rather than replacing them. A great example of this is in providing clinical decision support, highlighting areas of interest or suggesting potential diagnoses or treatment options based on a data set far larger than any human could grasp. While machines are adept at processing large amounts of data, there are many factors that humans are able to account for that machines simply can’t comprehend; on the other hand, humans are barely able to process even a fraction of the data machines can – making a combination of human and machine intelligence the most accurate diagnostic approach. Working together, humans and machines can provide faster and more accurate treatment of conditions to not only address medical issues before they become serious, but also to optimize patients’ health and wellbeing.

Personalized Care

Personalized medicine has been a buzzword since the human genome was first sequenced in 2002 but, unfortunately, reality has not lived up to the hype – yet. Artificial intelligence has the ability to simultaneously analyze far more data points than a human can, and to provide statistical models for potential diagnoses given a particular patient’s unique set of data. There are a number of AI-powered apps on the market which combine AI with medical expertise to interpret a patient’s answers to various questions and respond with a recommended course of action. In some communities where access to high-quality care is limited, this technology is filling the gap and making significant improvements to population health. As an example, Rwanda has a staggering 10,000 residents per doctor, making access to care difficult and expensive; but the introduction of an AI app called Babylon has drastically altered the healthcare landscape. Nearly a third of the population has used the app to access health care advice, dramatically enhancing access to care where providers may not otherwise be available or accessible.

While human involvement in diagnosis and treatment is still critical – all too often AI systems still identify false positives – applications like Babylon can improve the quality of information available to patients, support patient engagement and, ultimately, relieve some of the pressure on overextended healthcare systems around the world.

Patient Data and Privacy

One of the ways AI and machine learning algorithms are trained is to present the system with a large amount of data from which to learn. Unfortunately, this approach is hampered by two challenges particular to healthcare:

  1. there is a lot of data but most of it is not high quality, and
  2. most data is not available to researchers because of strict (and necessary) patient privacy regulations.

These limited data sets have a real impact on the effectiveness of AIs: lack of diversity can lead to incorrect assumptions or bias across different populations, a problem that facial recognition and speech recognition algorithms have already struggled with and been publicly criticized for.

University Health Network (UHN) in Toronto has taken a unique approach to solving the patient privacy problem, by creating a patient-controlled system where blockchain is used to control and track who has access to personal health data. The system also allows patients to grant and revoke access to researchers, enhancing transparency and engagement.  Other AIs are using natural language processing to read increasingly more complex and messy data sets, improving the quality of data which can then be used to train smarter and more accurate medical AIs.

“Explainable” AI Enhances Trust

Clinicians are trained to analyze data to make connections between different symptoms and draw conclusions about diagnoses and patient health, and may often do so unconsciously. But what happens when an AI simply spits out a percentage of risk? Without context, this information may not be useful to a human doctor interpreting the results, and limits the extent to which the data can be used. This problem has led to the development of a new field of “explainable” AI. These systems not only draw conclusions from diverse sets of data, but can also explain the links between different risk factors and outcomes based on evidence – allowing clinicians better insight into the connections between seemingly unrelated data.

Transparency also builds trust in what may otherwise appear to be a vague and arbitrary output. While trust may seem like a superficial benefit, the transparency and explainability of AIs has real-world impact when it comes to reducing bias and errors in the medical system. From an ethical perspective, it is also important to understand how machines draw their conclusions so that we can ensure they are doing so appropriately.

The Doctor is…Automated?

Automation is a nuanced conversation in any industry, no less so in healthcare where organizations are under increasing pressure to treat aging populations with fewer resources. By now it should be clear that automation can never completely replace humans in providing compassionate care, but that doesn’t mean it has no place in the healthcare industry. Studies have shown that both nurses and doctors spend a significant amount of time on tasks unrelated to patient care, such as documentation, billing, reporting and insurance; not only that, but organizations spend tremendous time and resources ensuring compliance with regulatory and accreditation requirements. In the future, many of these repetitive tasks may be automated, leaving clinicians to focus their attention on what machines can’t do: providing compassionate care to their patients.

Implementing Artificial Intelligence in a Patient-Centric Environment

Today’s AI pales in comparison to what we anticipate it will be capable of in the future – the possibilities are both endless and exciting. We are on the cusp of a radical transformation in healthcare, but it is one that needs to be approached with care and consideration to ensure we don’t end up in a technological dystopia where compassion has been traded for clinical efficiency. There is still a tremendous need for human healthcare professionals to provide care to patients, with or without the assistance of medical AIs; in fact, it is very likely that the rise of AI will make skills like empathy and caring even more valued than they are today.

This vision relies upon bringing together people and technology to create a world where clinicians and patients alike benefit from technologies which augment human cognition, automate non-value-added tasks, and help us better understand ourselves. In the end, perhaps that’s what digital compassion is: allowing technology to support the human connection in a way that blends the art with the science, creating a truly patient-centered care environment.

Author: 

Kim Osborne Rodriguez,P.Eng., RCDD
kim.osbornerodriguez@hhangus.com

HH Angus is pleased to announce the appointment of Sam Cabral as Associate Director, Commercial Division. This move recognizes Sam’s significant contributions to the overall operations of the Commercial Division.


Sam joined HH Angus in 1998 and has held progressively senior roles. In his 20+ years in the industry, he has developed a strong reputation as a strategic planner and sound decision maker. Sam is well respected in the commercial interiors industry as someone who exceeds at ensuring quality delivery, and being attentive to the unique needs of each client. He leads HH Angus’ Tenant Group and his role carries managerial responsibilities for both project supervision and his team, as well as business development and strategic planning for both the Commercial Division and the Tenant Group.

Some of Sam’s recent notable projects include Ernst & Young 'Workplace of the Future', 100 Adelaide office fit-out; various office renovation projects for TD Bank Group; Ricarda’s Restaurant; York University, Osgoode Professional Development; City of Toronto, Court Divisions; Penguin Random House, office fit-out; Scotiabank, Ecosystem Program office refresh; and numerous commercial projects for Cadillac Fairview.

Learn more about Sam (bio). 
Learn about HH Angus’ Tenant Group.
Sam can be reached at sam.cabral@hhangus.com, 416 443 8243.

Is your facility and its electrical infrastructure prepared?

As electric vehicles (EVs) become more prevalent, they present a challenge for institutional-type facilities that have significant on-site parking, in terms of how to address the charging requirements of EV owners. Toronto’s Sunnybrook Health Sciences Centre (SHSC) is one such facility. With a three million ft2 campus and 4,535 parking spots, vehicular traffic exceeds 10,000 cars per day.

In 2018, SHSC was experiencing power outages in parking lots due to EV owners using adapters and extension cords to charge their vehicles from housekeeping receptacles. Recognizing the growing demand for on-site charging and wishing to promote green initiatives, SHSC investigated available incentive programs for an EV charging project.

HH Angus was engaged to assist SHSC in delivering this project. The first decision was to identify the type and number of charging stations that would best meet the needs within the established budget. One of the first decisions was which charging level to provide of the three levels available. Level 2 was selected, offering a full charge in four to six hours.

Key considerations for the supply of EV charging stations included physical construction and design features (for example, retractable charging cords were an important feature); service agreements; built-in wireless connectivity; and warranty coverage. It was also necessary to address the increased electrical load for the parking lots through power distribution upgrades and modifications to existing switchgear.

An important decision with direct impact on the installation design was the selection of dual-head EV charging stations, which allow two adjacent vehicles to be serviced by a single charging station. SHSC eventually installed 20 dedicated EV charging stations.

The entire project was successfully completed in approximately four months. By undertaking the necessary project planning, institutional facilities can help ensure their parking areas are ready to meet the requirements of EV owners and further support of green initiatives.

Philip Chow, P.Eng., P.E., was the lead engineer on the project and is a senior project manager at H.H. Angus & Associates Ltd. He specializes in electrical projects and construction in critical facilities and can be reached at philip.chow@hhangus.com.

Bavan Poologarajah,EIT., was the senior electrical designer on the project and worked on the project from initial concept design to final commissioning. Bavan has worked on a number of electrical projects in critical facilities and can be reached at Bavan.Poologarajah@hhangus.com.

Sending you our very best wishes for a healthy and happy holiday season!

From your friends at HH Angus

This year we turned our card into a delightful set of DIY desk decorations with special holiday messages.

Some assembly required.
(Because we’re engineers and you know how much we like that!)

Click here to download DIY desk decorations

As another year draws to a close, we particularly want to thank you – our clients, project partners and industry friends – for your role in helping HH Angus achieve the milestone of 100 years in business, which we celebrated this year. We’re grateful for the opportunity to build long-standing relationships and to deliver the kind of dedicated client service that builds trust and respect.  

Over this holiday season, we wish you and yours the very best, and look forward to another great year ahead as we begin our second century – Happy Holidays! 

Guest Speakers:  Michael Hyatt | Dr. Rueben Devlin | Andrew Day

 

Across the board disruption, led by the rapid advance of technology, is changing everything about the delivery of healthcare, from how we think about healthcare, and how we plan tools and strategies for the future and implement these, to what hospitals, primary care, and long term care facilities are going to look like and how they will function in the coming decades.

On October 29th, HH Angus invited leaders from Ontario’s healthcare sector, as well as the financial, real estate, architecture, engineering and construction industries who focus on healthcare, to join us for our Ideation: Healthcare Reimagined. The conference explored how delivery of care will evolve and benefit from the digital transformation disrupting nearly every industry today.

We’re sharing a few of the many fascinating insights from this event to help frame the degree of disruption ahead and the change that will be necessary to successfully deliver better healthcare.  We’d like to thank our speakers for their insights into the impact of technology disruption, the evolution of change in the healthcare industry, and for allowing us to share highlights from their presentations.

Technology Disruption

Michael Hyatt is one of Canada’s top entrepreneurs, and a Founding Partner and Fellow at the Rotman School of Management’s Creative Destruction Lab. He examined the larger view of how disruption is both prevalent and good, and how we must embrace it to create positive change.

Michael shone a spotlight on the sheer unlikeliness of most disruptive changes, which explains the tendency of human beings to not see these big changes coming. Disruption isn’t new; it has been changing the nature of work since the Industrial Revolution, leading to better and more productive work than ever. The explosion of computing power is increasing predictive capacity, with far-reaching consequences and untold benefits. Knowledge is compounding exponentially and the growth in machine learning will bring myriad new opportunities and make obsolete low value, repetitive work. Which is good, Michael said, because studies show that autonomy and a sense of purpose mean more to employees than money when it comes to job satisfaction. Sponsoring creativity, invention and random thinking days in your organization will bring unexpected positive results. Despite the public spotlight on technology, innovation is still about people, and leaders need to focus on keeping staff engaged if they want their organizations to innovate. 

The Future of Healthcare in Ontario

Dr. Rueben Devlin is an orthopedic surgeon and an experienced health care executive with demonstrated success working in hospitals and the health care industry. The former CEO of Humber River Regional Hospital, North America’s first fully digital hospital, Dr. Devlin is currently Special Advisor and Chair of the Premier’s Council on Improving Healthcare and Ending Hallway Medicine in Ontario, and is well positioned to influence the future of health care delivery in Ontario.

Dr. Devlin highlighted the need to take action with a long-term view in mind, in order to significantly improve health outcomes—to plan for services and the facilities that will be needed ten to fifteen years from now, not just next year.  The Council’s second report identified a roadmap for the future of healthcare delivery, outlined under four headings:  integration, innovation, efficiency/alignments, and capacity. Enabling all of these are digital supports, the tools that replace processes and tools now at the end of their useful life, such as outdated fax technology. Digital supports enable improvements in service delivery and make interactions with the health care system more effective for patients and providers.

Integration

Patient-centric health care systems allow medical staff to connect easily with patients and to share information safely and securely among the health care team to the benefit of each patient. He noted that we need to improve patients’ ability to navigate the health care system, ensuring primary care is the foundation of an integrated health care system. We need to connect multiple health care providers to ensure better integration and a simpler, smoother patient/caregiver experience.

Innovation

Improved options for health care delivery include increasing the availability and use of virtual care options, both synchronously and asynchronously. The latter allows patient/practitioner to interface at times that are convenient for both. Patients and providers should be able to use technology to access health services in the most efficient way possible. For example, Ontario has the opportunity to modernize home care, and provide better alternatives in the community for patients who require a flexible mix of health care and other supports.

Efficiency and Alignment

Improvements happen by doing things differently. Data should be strategically designed, open and transparent, and actively used throughout the healthcare system to drive greater accountability and to improve healthcare outcomes. Two examples are:

  1. Ensure Ontarians receive coordinated support by strengthening partnerships between health and social services, which are known to impact the social determinants of health.

     

  2. As the healthcare system transforms, design financial incentives to promote improved health care outcomes for communities and increase value for taxpayers.

Capacity

This includes bricks and mortar, human resources and collaborative inter-professional leadership. We need strong leadership throughout the system—we can’t just simply be caretakers of the current system, because if you are caretakers of the system, you continue to get what you’ve already got.

What could be achieved if we made bold changes?

  • Imagine a health care system where patients can conveniently and securely access their own personal health care information and make healthy choices by accessing preventive services in the community after talking with their primary care provider.

     

  • Imagine a system where providers are working in a team environment and have access to a full continuum of care for their patients, in addition to digital tools and professional development support and resources.

Moving Forward

Dr. Devlin describes one of his main tasks as the identification of barriers in order to make the system work more effectively.

“What are we going to look for? More virtual options for patients and providers. Data used as a management tool—how do we exchange it, how do we share it across the province, and how do we start using it for predictive analytics so it works for us?  We need to think about coordinated treatment plans, designed and delivered by integrated and inter-professional teams as well as upstream interventions, how to modernize our funding system and use Predictive intelligence and predictive analytics. When data is used strategically, information becomes relevant for decision making and we will be better positioned to connect patients to the right care at the right time.”

The Health System of the Future 

Andrew Day is a Principal with GE Healthcare Partners where he leads their global analytic consulting team and the design of GE’s real-time data analytics for hospital command centres. He has extensive experience in the US, Canada, UK, Asia and Australia, working with clients to focus on the future of healthcare facility design to improve operational efficiencies and deliver better health outcomes.

Andy explored the trend he is seeing towards localized community care.  Overwhelmed tertiary and large urban healthcare facilities can’t grow beds or services quickly enough to meet demand—budgets simply do not allow for this. Instead, they are partnering and trying to leverage other care settings (community care and outpatient strategies) as a matter of necessity, not as a matter of convenience. The focus is on how the acute care facilities and the community can work together to solve for the system-wide solution.

Digital Twinning

For new hospital development, digital twinning and simulation models provide the ability to test how systems and spaces will work together prior to construction. It’s vital to redesign the care delivery system itself—it’s not enough to simply digitize the status quo; the actual process of delivering care in the new setting has to change.  By changing the workflow, changing the dynamics and leveraging automation, delivery of care can be done better.

Command Centres

Command centres across a range of industries have common elements. The first is individual operators, individual experts from different functions, co-located, with their own transactional and operational systems in front of them. They also have a wall of analytics providing shared visibility to what’s going on across the system which alerts them to situations they need to act on. Key is that these alerts need to be in near real time and they need to be very specific. The best ones are about a specific patient that needs a specific action right now – or better yet, to forecast that it will be needed before it happens.

In designing a command centre, Andy recommends starting with the problem that needs to be solved, design the action, design the trigger for that action, and then make sure the right people are in the room and empowered with the right culture and the right tools to deliver care more effectively and at a higher utilization rate.

The analytics, or tiles, available in the command centre are also available on tablets as staff move around the hospital, and available on any terminal for staff to log in.

What’s Next for Command Centres?

Andy is looking ahead to broader adoption of command centres to ensure better integration between healthcare units.  Optimizing and connecting care across healthcare systems beyond single campuses. Leveraging AI/Machine Learning (ML) to forecast discharge date, likelihood of re-admission, etc. Guided ML being applied to limited but reliable variables is what is needed for using ML in real time. ML, neural networks, and simulation in the loop are useful forecasting tools and the basic building blocks of true AI, and they are already starting to quietly be applied in healthcare.

Key Take-aways From the Event

The pace of change is phenomenal. Humans initially tend to be afraid of change but time and again history has proven that change has improved our lives dramatically. We’re only seeing the opening act of what technologies like artificial intelligence will do. In healthcare, artificial intelligence will impact the role of health professionals and how they do their jobs, as well as the design of and access to healthcare facilities.


Currently, the hospital is seen as the epicenter for receiving healthcare. However, as demographics and technology changes, we will see a decentralization of healthcare. Healthcare will likely be distributed close to where it is needed – from clinics to homecare to even your phone. Hospitals will continue to be important, but their role will evolve to one more of facilitating and optimizing the system, as opposed to just focusing on the acute care piece of it.


Technology will be critical to the transformation of healthcare. The ability for patients to have access to their electronic health records and to easily transport this to the healthcare provider of their choice will significantly reduce friction in the system and lead to better care. As healthcare becomes decentralized, command centres will play a key role in integrating the various players.


The importance of change management cannot be overlooked. The transformation of healthcare will involve dramatic changes. Governments, healthcare professionals, patients and other stakeholders" need to be informed to the opportunities and buy into a collective vision for the future.

What Will Be the Role of Engineers?

Reflecting on the above highlights, Harry Angus (HH Angus’ CEO) foresees the use of current and foreseeable technology changing the face and means of healthcare delivery in profound ways and, if properly constructed, enabling far better knowledge and control for all patients.

Nice in theory but, practically, how can current leaders of healthcare effect the changes necessary at this point? Although the following is by no means comprehensive, here are some thoughts.

The formation of Ontario Health teams will mean that all health providers within a defined geographic district will need to agree how health care should be managed going forward, which institution or provider is to provide what service, how they will cooperate in creating comprehensive electronic health records and intra-communications systems, and who will assume the role of primary responsibility across a continuum of care.

To fund the changes necessary to address the above points, it will be necessary to create efficiencies out of a district’s cumulative budget, a goal made more difficult in light of the aging demographics of many areas and the fact that the many healthcare providers in the geographic region currently have their own priorities, management structures, and methodologies. It will be a huge change management task and a testament for the leaders who successfully take it on.

There are many areas for consideration; following are our thoughts in areas where we as engineers might be of assistance.

  1. Assessment of facilities located within a geographic region and evaluation of which are up to the task going forward; e.g., would it help to have sole practitioners be co-located, to move non-intensive activities to a different level of facility, or close down some facilities due to age/condition, operating costs, or inability to support on going medical procedures?

     

  2. As the combined vision of healthcare delivery is developed with the team, recommending strategies for how team members will share information, across which systems and infrastructure.

     

  3. Engage with healthcare facilities at the outset of strategic visioning to determine how hospital operations will be reimagined/modified to take advantage of current best practices.

     

  4. Understand how team members will take advantage of alternative technologies and delivery systems, such as virtual care and augmented reality; e.g., how a paramedic might quickly access enhanced medical expertise necessary to a patient.

     

  5. Consider and make recommendations on how remote monitoring may be utilized in proactive and beneficial ways.

The next ten years will witness rapid change in healthcare delivery, due in part to the advancement of technology. The scope and speed of change will be disconcerting to many, but welcome news to every patient who will have the opportunity to access their own comprehensive medical records, much as other industries have already converted their systems.

By proposing a model of healthcare delivery based on geography and a co-ordinated full continuum of care for every individual in that region, the province has served notice that the status quo will disappear. What the new model will look like, and how it will function, will likely vary between regions due to local needs. Technology will be the enabler to move the necessary changes forward.