Medical gas panel

Edward Hood, HH Angus’ Medical Gas Specialist, recently joined an expert panel discussing the issues around medical O2 in the fight against the COVID-19 pandemic. Here is a summary of his presentation for the Canadian Healthcare Engineering Society webinar:

Challenges of increasing the numbers of oxygen outlets to an existing system with a fixed supply pipe size

Since the start of the COVID-19 pandemic, hospitals have experienced extraordinary increases in oxygen consumption due to high numbers of patients admitted to intensive care units. A complicating factor in their care has been the challenge of adding oxygen outlets to an existing zone for the purpose of treating COVID patients. Why is this a challenge? Simply put, many existing oxygen zones within a healthcare facility were not sized for large increases in oxygen flow. Many older healthcare facilities had their oxygen zones sized on oxygen outlet counts, which applied a diversity factor. That approach changed in the last few editions of CSA Z7396.1, which now focuses on understanding specific high demand zones (critical care for example), and designing robustly-sized piping infrastructure to those zones. However, the outcome is the same – many existing oxygen zones were never designed for “overflow” condition; as such, loading up existing oxygen zones by adding outlets or high flow oxygen devices must be managed very carefully.

Why is that? Substantially increasing oxygen flow in an existing oxygen zone will introduce increased pipeline pressure drops in the zone. A drop to 40 PSI at a zone valve will normally trigger the low alarm at the zone valve.

For this reason, it is important to analyze anticipated flow demand within the zone with the size of the oxygen service available in order to manage acceptable pressure losses that will not trigger alarm conditions.

Medical gas alarm

Factors affecting how many COVID patients can be treated in an existing medical gas zone

In hospitals, typical patient room usage is 5 L/min of oxygen; however, oxygen usage for COVID-19 patients can be up to 60 L/min or possibly higher, depending on the types of high flow oxygen devices in use. In order to manage pressure drops within a zone and avoid low pressure alarms, table E.5 in CSA Z7396.1 provides some guidance regarding expected pressure drops per 100ft of copper piping for a given pipe size. These pipeline pressure drops are:

  • ½ inch pipe @ 190 L/min will have .5 pressure drop per 100ft
  • ¾ inch pipe @ 500 L/min will have .5 pressure drop per 100ft
  • 1 inch pipe @ 1000 L/min will have .5 pressure drop per 100ft
  • 1 ¼ inch pipe @ 1800 L/min will have .5 pressure drop per 100ft

In other words, the following occupancy adjustments should be considered:

  • ½ inch pipe
    Non-COVID use = 38 patients in a zone
    COVID use = 3 patients in a zone
  • ¾ inch pipe
    Non-COVID use = 100 patients in a zone
    COVID use = 8 patients in a zone
  • 1 inch pipe
    Non-COVID use = 200 patients in a zone
    COVID use = 16 patients in a zone
  • 1 ¼ inch pipe
    Non-COVID use = 360 patients in a zone
    COVID use = 30 patients in a zone

Concluding recommendations for ensuring adequate oxygen supply

  • Before admitting COVID patients to a typical patient room, facility staff need to check the zone valve to verify pipe size in order to determine occupancy limits. Larger-sized zone valves are typically an indicator of a zone having greater capacity to flow oxygen with lesser pressure drops.
  • Have a pandemic plan to identify where best to convert existing beds to COVID rooms. Consider the size of the oxygen zone valve serving the zone.
  • If you are designing for a new hospital, consider designing a pandemic floor with medical gas pipelines capable of the worst-case scenario load, and consider the pressure drops from the bulk pad/source equipment to the zone in order to keep pressure drop for the pipeline to below 5 PSI per CSA Z7396.1 requirements.

Edward Hood, P.Eng., B. Eng.
Technical Leader and Senior Mechanical Engineer
edward.hood@hhangus.com

Interior of a hospital

Infrastructure Ontario (IO) and Niagara Health have prequalified the EllisDon Infrastructure Healthcare (EDIH) team as one of three bid teams for the new South Niagara Hospital Project in Niagara Falls, Ontario – and we’re excited to be part of this design team, providing Mechanical Engineering and Materials Management/Conveyance Consulting (automated guided vehicles).

The project is on a greenfield site in Niagara Falls ON, and will be part of Niagara Health’s connected healthcare system. The acute care hospital will feature*:

  • 24/7 Emergency Department; diagnostic, therapeutic, and surgical services; medical, surgical and intensive care inpatient beds
  • Ambulatory Services; post-acute Complex Continuing Care (CCC) inpatient services
  • Centres of Excellence specializing in stroke, complex care, geriatric/psychogeriatrics and wellness in aging
  • Designed with the next age of innovation in mind, the South Niagara Hospital will seamlessly integrate technology that supports high quality healthcare.

For area residents, an important aspect of the new South Niagara Hospital project will be the amalgamation of services, providing easier access to care in a centralized location. As well, the new site will have a focus on seniors and accessibility, along with high standards for infection prevention and control embedded into all aspects of the patient experience.

The hospital will be designed to achieve LEED Silver, in addition to targeting Canada’s first WELL®-certification for a healthcare facility. While the LEED standard relates to buildings, the WELL standard focuses on occupants, in this case on the health and well-being of staff, physicians, volunteers, patients, families and caregivers and the Niagara community.
* Source: https://www.infrastructureontario.ca/South-Niagara-Hospital/

Screen capture of the French website

Aujourd'hui, nous lançons notre site Web en français pour fournir des informations concises et pertinentes pour soutenir notre présence croissante au Québec au cours des 11 dernières années. Nous vous invitons à visiter le site en utilisant le lien ci-dessous.

Today we're launching our French website to provide concise and relevant information to support our growing presence in Quebec over the last 11 years. We invite you to visit the site using the link below.
www.hhangus.com/fr

Internet of things low poly smart city 3D wire mesh.

The world continues to embrace the Internet of Things (IoT), and emerging technologies are taking on a growing importance within built environments.

A confluence of innovation in big data processing, ultra-low power wireless networks, embedded sensor technology, and energy management has accelerated the emergence of smart buildings. As these become widespread, we have witnessed a reciprocal, or better yet, exponential growth in the planning activities to successfully introduce the sophisticated automation and enhanced user experiences they promise. In particular, hospitals, commercial offices, entertainment, retail, airports and education facilities all have clients who will be directly impacted by these advances in technology. This paper highlights the opportunities to provide a proactive change management plan for a redevelopment or capital project.

A redevelopment project provides an opportunity to introduce a large range of new technologies; however, the ‘big bang’ approach that is associated with the opening of a new facility can hinder the adoption. The role of technology should be understood from a functional perspective long before the walls and bricks are in place, so that proper infrastructure exists to support the smart building.

Any successful Digital Strategy and Transformation Project must consider aligning a change management approach to engage users to be prepared for opening day. The vast amounts of change can overwhelm staff when they move into a new building with new technologies, from new floor layouts and different staffing models, to the introduction of more mobile technology, more paperless systems, and automation of tasks that staff previously performed manually. It is imperative to address the capacity for change well in advance of the Opening Day.

The principles of Change Management and what is unique about a redevelopment project

Change really occurs when it is done at scale – throughout the organization - across all levels and stakeholder groups. There are several industry-recognized principles listed below for adopting change in large organizations. However, given the degree of complexity, number of stakeholders and length of project, there are unique factors that need to be considered with redevelopment.

The Principles

Change is Rolled Out

Redevelopment Project Considerations

Redevelopment projects have many external stakeholders as well as internal stakeholders; employees and project delivery teams have creative authority that can turn into resistance

Change Starts at the Top

The redevelopment project cycle covers many years and the leaders may change; executives are often insulated from the reality of day-to-day operations by layers of the organization

Change is Engineered

A change management program can be planned, coordinated and monitored; however, it is not like a construction project in that it involves breaking new ground and cannot be predetermined fully in advance

With So Many Stakeholders, What Matters Most?

With the variety of stakeholders involved in a capital project, such as end-users, executive team, information technology department, facilities/operations teams, government oversight and taxpayers, there are differing and opposing drivers for each of these groups, which include expected benefits, cost containment and scope definition. There is a need for a framework to define a course of action and for leadership to remain committed to it. Finding the common goals between all the stakeholders will be critical to the long-term success.

In a redevelopment project, the ideas and inspiration for change often come from parties outside the end-user stakeholder groups, such as the design team, the information technology department, facilities engineers, or other support services. Ideally, these ideas are then sponsored by the executive leadership with input from users; however, this is not always the case. It often happens that use cases for the functionality of technology are brainstormed by someone “higher up” or by the IT department, and then rushed straight into design. There is no wrong party to support idea generation; however, the important component is to ensure that end-users have been engaged and have faith that the new technologies will create a better environment. One method of engaging these users is to visualize the changes, and to write and approve the use cases for their workflows. This approach uses Lean thinking and iterative cycles to build consensus. It is critical that time be set aside to ensure that these use cases are considered by end users and validated.

It is important to note that not all parties will see the changes as necessary, especially if they don’t belong to the organization or share the same vision. To address this, create a cross-functional project team, map out the impacted stakeholders and address their unique needs. You will likely appreciate that some people are not able to easily adapt to new technologies. Doing so requires both willingness and capability; mindsets get in the way of actually making use of the technology. Therefore, it helps to have champions and support available. There will also be employees in the organization who are very keen to embrace change that results in a more automated and sophisticated building. Support these individuals in advance of the redevelopment projects by leading change on a smaller scale; for example, by introducing new mobile technologies or smart boards in meeting rooms.

Engineer standing in front of a presentation screen and pointing to it while explaining details to the audience.

Change Starts at Every Level

IT IS IMPORTANT THAT EMPLOYEES
CONTINUE TO SEE AN IMPACT AND BE
INVOLVED IN KEEPING UP THE MOMENTUM.

Long before shovels are in the ground, the organization’s leaders are visioning what the new facility will look like and how it will operate. However, project cycles of up to 10 years can be a significant deterrent for senior leaders seeing their vision through to completion. On one hand, they may perceive what seems to be ample time to prepare for the coming changes; on the other hand, they may also feel that getting ready for a change so far in the future is futile. Therefore, it is important that employees continue to see an impact and be involved in keeping up the momentum.

Communication and setting the stage for the ultimate change may be the most critical factor in successful deployments. This requires an engineered approach to obtaining buy-in. To ensure the cultural ‘soil’ is ready before planting the seeds of change, develop a bi-directional communications plan that allows questions to be addressed. The objective is to prepare employees to understand the benefits of the change, as well as the necessity of the change, and for them to be emotionally ready to execute the change. This requires a two-way dialogue to give staff sufficient time to provide feedback. Employees who fully support the change can be invited to co-develop a plan to describe the benefits and address concerns with sufficient support and training.

Conclusion

FACILITATING CHANGE DOESN’T NEED TO
BE DIFFICULT OR ONEROUS.

As a final consideration, recognize that silos in your organization may create barriers to disseminating your plans. I have often seen change initiatives fall apart when different groups that are equally impacted refuse to take ownership for action. They wait for the other department to come up with a plan and take the lead, while their own group sits back and provides “constructive criticism”. This reveals a culture that is resistant to change. It is important as a leader to break down these barriers. Bring employee groups together to understand the shared objectives and then identify what barriers may get in the way. It may be that both departments are experiencing the strain of increased workload from a large volume of change. However, facilitating change doesn’t need to be difficult or onerous. Following Lean principles, create small batches of work, and plan to stretch these batches out over time.

6 Steps to Successful Technology Change Management

As a strong leader, you can set the stage for successful technology change by adopting these six Change Management steps:

  1. Identify the common goals between all stakeholder parties
  2. Engage end users in depicting the use cases for technology
  3. Communicate the benefits of these use cases
  4. Recognize change champions and providing them with support and training
  5. Test technologies in advance by using pilot studies
  6. Bring together stakeholders to voice their concerns

A change management program needs to be adapted to its unique situational factors. Multiple stakeholders - from financiers, end users, IT, facilities, architects and engineers - can make implementation of your plan more challenging, but by following the steps above, you can ease the process.

If you have questions or would like to learn more about change management, we are happy to start a conversation to see how we could help.

Megan Angus

Megan Angus, RN, Lean, EDAC
Division Director, Angus Connect

megan.angus@hhangus.com

June 3rd, 2021
1:00 PM – 2:15 PM EDT
Panel Discussion including live Q&A

Bedroom for patient in a hospital, Empty bed and wheelchair on hospital ward

COVID-19 treatment has created a sharp increase in the need for isolation rooms now and in future expansion and redevelopment plans. As a follow-up to its March session on “Isolation Room Design” that outlined design principles and strategies, the Canadian Centre for Healthcare Facilities is bringing together a multi-disciplinary panel in a special session to share insights and answer audience questions. The panel of subject matter experts will share their experiences and insights in healthcare settings from planning, design, architectural, maintenance and operations perspectives. The audience will have the opportunity to share comments and ask questions, in order to better understand the unique considerations at hospitals and other care settings as the need for Isolation Rooms increases during the current pandemic and in plans going forward.

To register, go to www.cchf.net or click on the link below.
https://us02web.zoom.us/webinar/register/WN_vIlOFdjHQmqjqcCchGhH4A

Panelists:

Gordon Burrill, P.Eng., FASHE, CHFM, CHC
President, Teegor Consulting & CCHF Co-founder, Board of Directors' President

Craig Doerksen
Divisional Director, Facility Management, Health Sciences Centre, Winnipeg

Jessica Fullerton, M.Sc. CIC
Construction Lead – Infection Prevention and Infection Prevention and Control, The Ottawa Hospital

Scott Patterson, P.Eng., PMP
Senior Director, Facilities Planning and Development, Sinai Health

Robin Snell
Principal, Parkin Architects Limited

Nick Stark, P. Eng., CED, LEED AP, ICD.D
Vice-President Knowledge Management, HH Angus and Associates 

Moderator:

Rita Mezei, MSc.
Executive Director & Co-Founder, CCHF

COVID-19 treatment has created a sharp increase in the need for isolation rooms now and in future expansion and redevelopment plans. As a follow-up to its March session on “Isolation Room Design” that outlined design principles and strategies, the Canadian Centre for Healthcare Facilities is bringing together a multi-disciplinary panel in a special session to share insights and answer audience questions. The panel of subject matter experts will share their experiences and insights in healthcare settings from planning, design, architectural, maintenance and operations perspectives. The audience will have the opportunity to share comments and ask questions, in order to better understand the unique considerations at hospitals and other care settings as the need for Isolation Rooms increases during the current pandemic and in plans going forward.

To register, go to www.cchf.net or click on the link below.
https://us02web.zoom.us/webinar/register/WN_vIlOFdjHQmqjqcCchGhH4A

Panelists:

Gordon Burrill, P.Eng., FASHE, CHFM, CHC
President, Teegor Consulting & CCHF Co-founder, Board of Directors' President

Craig Doerksen
Divisional Director, Facility Management, Health Sciences Centre, Winnipeg

Jessica Fullerton, M.Sc. CIC
Construction Lead – Infection Prevention and Infection Prevention and Control, The Ottawa Hospital

Scott Patterson, P.Eng., PMP
Senior Director, Facilities Planning and Development, Sinai Health

Robin Snell
Principal, Parkin Architects Limited

Nick Stark, P. Eng., CED, LEED AP, ICD.D
Vice-President Knowledge Management, HH Angus and Associates 

Moderator:

Rita Mezei, MSc.
Executive Director & Co-Founder, CCHF