Shot of a group of programmers working together on a computer code at night

5G and Pilot Projects to Optimize New Infrastructures

By Akira Jones, BIM Leader, HH Angus & Associates Limited

By now, most of us in the Architecture, Engineering, and Construction (AEC) sector have read about, lamented and experienced our industry’s general conservativeness and inability to affect change quickly, particularly with respect to developing and emerging technology. However, we are starting to see now that this is changing. Large-scale 3D printing, generative design, virtual/augmented/mixed reality, artificial intelligence, design process automation through software and a push towards a common data environment for design and construction information represent some of the many ways AEC is embracing the digital era.

The nature of design consulting is also changing. Multi-disciplinary design firms are transforming into software developers, moving their way into the SaaS market. General contractors employ teams of software developers. Companies from non-engineering sectors are rapidly entering into the AEC market. Professional services companies and technology start-ups are developing platforms for optimizing building infrastructure through Edge Devices and creating operational/digital twins. Much like the rest of the world, AEC is converging towards digital processes and the borders between different sectors are becoming less defined.

Edge Devices and Digital Twins will have a massive impact on how we design, build and operate building infrastructure, particularly as we continue our push towards a more sustainable built environment through low or zero carbon, net zero and more. We are already seeing a big uptake of smart buildings technologies and the global smart building market is expected to reach almost 62 billons USD by 2024.

Understanding Internet of Things, or IoT technology, in particular, and the current and future benefits to the built environment and how people interact with it will be instrumental in HH Angus’ ability to design spaces that perform better, create better and longer lasting value, and reduce the impact on the environment. It’s certainly easier to design and build new buildings with smart technology but what really interests us is the opportunity in the massive stock of existing infrastructure that can significantly benefit from these technologies. In fact, they provide an opportunity to evolve the ways in which we deliver our work and our relationships with the end-users, from the building owners and operators to occupants.

As designers, we often lose touch with the infrastructure we design, perhaps coming back years later to find something unrecognizable from its original state. At the opposite end, engineers also come into buildings later in their lifecycles, often without proper as-built documentation and have to scrape together any available information about how or why the building operates the way it does. Not an ideal situation, which can typically add time and expense to most projects.

Gathering operational, environmental and presence data can provide a bridge between the building, its occupants, and the engineers to create the potential for gaining useful insight into a building’s real-world operations and occupant behavior.

To this end, HH Angus had the desire to gain a deeper understanding of the relationship between smart buildings technologies and improving building performance. We launched our Smart Spaces initiative in 2019. Through this, we are exploring these new technologies through our own initiatives as well as research partnerships with academic institutions and tech start-ups and established providers. With Smart Spaces, we are exploring the use of IoT edge devices to gather environmental and occupancy data in commercial and institutional buildings.

As our pilot project had begun pre-COVID, we, like many firms, had to quickly adjust our plans. With everyone working from home, our office was empty, and we were trying to figure out what data we could collect since there was no one in the building. Like any challenge, this presented an opportunity. Where our previous approach had been to install a set of sensors that gathered a wide array of data with plans to see what insights we could glean, we were presented with a situation that provided us an immediately relevant use case. We thought about ways that the sensors could be used to aid our eventual re-entry into our own office. We shifted the balance of sensors to include more presence sensors to aid in people flow throughout our office. The sensors were placed in common and high traffic areas, giving employees aid in maintaining the ability to socially distance while in the office while also giving insight into usage patterns of these common spaces. The collected data is integrated and aggregated into an intuitive dashboard and transferred to the cloud/other edge devices via the 4G network such that we can view the basic analytics.

This pivot has helped us gain insight into the challenges faced by many of our commercial and institutional clients.

With the first stage of our pilot implemented, we look to expand our research to the 5G network. We were fortunate enough to be awarded access to the 5G ENCQOR test-bed located in the MaRS Discovery District (in downtown Toronto) which gives us the opportunity to explore use cases that can benefit from the low latency performance of 5G technology. We are currently engaged with our clients to determine real-world use cases for existing buildings to research on the testbed, paving the way for purpose-built data platforms.

As with any new (or new to us), technology there are no giant leaps in innovation, only deliberate and incremental steps forward. Where the challenge lies is not in using these technologies, but in determining how these new technologies can help our clients and our employees adapt and succeed in an ever-changing world. As consulting engineers, we can (and should) take a little step out of the traditional AEC approach and adopt some of the best practices (and mindset) of tech start-ups – mainly being inherently curious; focus on possibilities as opposed to the way its always been done; and be willing to quickly prototype, learn, and modify to get a minimum viable product into the real world.

HH Angus is an employee-owned, independent consulting firm of engineers, technical specialists and project managers with offices in Vancouver, Toronto and Montreal. Our core services include mechanical and electrical engineering, lighting design, vertical transportation, energy, sustainable design, information communications audiovisual technology (ICAT) and security design and digital strategy consulting. Together, we create innovative solutions for our clients’ most complex challenges to expand what is possible for a better future.

Reprinted from CanBIM Innovation Spotlight Publication 2021
https://www.canbim.com/articles/why-consulting-engineering-firms-should-think-more-like-tech-start-ups

Akira Jones, P.Eng., LEED AP, Principal
BIM Leader
akira.jones@hhangus.com

Akira Jones, P.Eng., LEED AP, Principal
BIM Leader
akira.jones@hhangus.com

Exterior of BC Place and Science World with modern cityscape and harbour, Vancouver, British, Columbia, Canada.

Canada’s federal Climate Plan aims to exceed Canada's 2030 emissions reduction target and achieve a net-zero emissions economy by 2050. There will be many pathways to get to this goal. One pathway is the decarbonization of our energy systems. Creative Energy is collaborating with BC Hydro in an effort to decarbonize their energy plant at 720 Beatty Street in downtown Vancouver by adding new electrode steam boilers to the existing natural gas-powered steam plant. HH Angus has been engaged to provide mechanical and electrical engineering services to support this important conversion.

According to Creative Energy, the new system would have enough capacity to serve approximately 12 million square feet of new development, enough to serve over 10 years of growth in low-carbon buildings in the downtown region and avoid 38,000 tonnes of greenhouse gases each year.

With a dedicated Energy Division that brings extensive experience with energy systems for the built environment, including low carbon energy and renewable/sustainable systems, we’re excited to be part of this important project that contributes to building a low carbon energy future.

You can read the full press release from Creative Energy and BC Hydro here – https://bit.ly/3l49o4U

If you would like to talk to us about assisting with your next energy project, get in touch with us.

Join HH Angus’ Nick Stark and The Ottawa Hospital’s Jessica Fullerton as they discuss Considerations for Planning & Design of Isolation Rooms to Improve Safety in Healthcare Environments. ”

Date: March 18 @ 1PM – 2 PM EDT

45 minute Panel Discussion followed by live Q&A
Webinar Registration Fee: $65 (including taxes and fees)
www.cchf.net

Isolation Rooms help to separate patients and residents in healthcare settings as needed to protect patients and staff. Typically, acute care hospitals allocate isolation rooms in hospitals, with some being simply private rooms, and others having specialized engineering depending on the clinical needs of the patient and the safety requirements presented.  Given COVID, hospitals, long-term care homes and other healthcare facilities are looking at increasing and potentially upgrading the design of their isolation rooms, and reconsidering engineering design to enhance safety in the facility.

This webinar covers:

  1. Differentiating between the different types of isolation rooms to meet specific needs and corresponding design criteria.
  2. Identifying infection prevention and control risks related to the design of building HVAC systems in ‘pressure’ (positive / negative pressure) critical spaces.
  3. Reviewing the role of HVAC systems in the context of Pandemic Planning and Catastrophic Event Management

Speakers:

Nick Stark's headshot

Nick Stark P. Eng., CED, LEED AP, ICD.D
Vice President, HH Angus and Associates Limited Consulting Engineers

In 40+ years at HH Angus, Nick has pioneered many innovative and sustainable initiatives as solutions to difficult challenges faced by clients. His technical expertise also benefits staff as he directs HH Angus’ Knowledge Management initiatives, ensuring the firm’s skillsets continue to lead the industry. In 2017, Nick was awarded the PEO/OSPE Medal for Engineering Excellence for his outstanding contributions to the profession. He spearheads the design and management of HH Angus’ P3 hospital projects, and served as the firm’s Principal-in-Charge for the massive $2 billion+ CHUM P3 project in Montreal. The team’s work on the project was honoured with the 2018 Schreyer Award, Canada’s highest honor for engineering.  Nick chair’s the CSA Subcommittee on Special Requirements for HVAC Systems in Health care Facilities, is Vice Chair of the CSA Subcommittee on Z8000 Canadian Health Care Facilities, and is a former member of the CSA Subcommittee on Infection Control during Construction or Renovation of Health Care Facilities.

Jessica Fullerton's headshot

Jessica Fullerton, M.Sc. CIC
Construction Lead – Infection Prevention and Control, The Ottawa Hospita
l

As a member of the Infection Prevention and Control team at The Ottawa Hospital, Jessica specializes in health care facility design and construction, focusing on design elements to help prevent the spread of infection. She has provided Infection Prevention and Control expertise on a wide range of acute care, rehabilitation, ambulatory care, community health, and long-term care projects. Jessica’s passion lies in bridging the gap between health care design and how it can positively or negatively influence the care and safety of patients. She currently sits as a member of the Canadian Standards Association (CSA) Health Care Facilities Technical Committee providing expert content for several standards related to health care design and construction. Jessica is the Chair and member of CSA training faculty for the Z317.13 Standard, Infection Control During Construction, Renovation and Maintenance of Health Care Facilities.  

Doctor smiling at child and parent

Infrastructure Ontario (IO) and Grandview Kids have announced a shortlist of three bid teams to design, build and finance the Grandview Children’s Treatment Centre Redevelopment P3 project in Ajax ON. We’re delighted to be part of the Children’s First Consortium which was named as one of the three teams moving on to the RFP stage for this 100,000+ ft2 greenfield project. The Grandview Children’s Treatment Centre will offer family-centred care for children and youth with physical, communication and developmental needs, and their families, in the Durham Region.

According to IO and Grandview, teams were shortlisted based on design and construction capability, experience, qualified personnel and financial capacity to undertake a project of this size and scope. The Children’s First Consortium prime team members are: Amico Design Build Inc. and Sacyr Construction S.A (Applicant Lead); Parkin Architects and HH Angus (Design Team); Amico and Sacyr ( Construction team); and Stonebridge Financial Corporation (Financial Advisor). 

Source Link: https://www.infrastructureontario.ca/Short-Listed-Proponents-Named-Children%E2%80%99s-Centre-Redevelopment/

Interior of the St. Joseph’s Health Centre, Mental Health Emergency Services Unit

The Mental Health Emergency Services Unit at St. Joseph’s Health Centre is the recipient of a 2020 Toronto IES Illumination Section Award. Congratulations to St. Joseph’s and the entire design team! HH Angus’ Lighting Design group was proud to have been involved with this project.

Energy-efficient LED lighting, complete with remotely located dimming controls, replaced the old, inefficient fluorescent fixtures. Remote control of lights in patient rooms provides increased staff security and convenience, and minimizes disturbance to patients. The design team consulted with hospital clinical staff, the architect and best practices in Mental Health design in order to provide tamper-proof and anti-ligature versions of lighting fixtures, M&E devices, and services. 

Click here to read more about the full scope of this project and some of its interesting design challenges.