University of Toronto

Terrence Donnelly Centre for Cellular & Biomolecular Research

University of Toronto institutions are world leaders in the quest to find the link between genes and disease. The Centre for Cellular and Biomolecular Research (CCBR) is an innovative, multidisciplinary facility and the first of its kind in Canada: an advanced research centre capable of competing with the world’s top research and development institutions. 

The CCBR was designed as a highly functional, flexible and technically advanced research facility that reflects the University’s status as a world leader in the field of genome research while, at the same time, recognizing the historical importance of its neighbouring buildings.

As a sustainable and green building, the CCBR showcased the use of new and emerging materials as key elements. The double façade curtain wall was one of these unique features. It supports natural ventilation on the south side, circulating air and promoting cooling in hot weather, and acting as a thermal sink in subzero conditions. This stack effect, controlled by variable dampers, considerably reduces the heating and cooling load on the mechanical systems. The curtain wall reduces noise infiltration and decreases heat loss, with the outer leaf of the double façade functioning as a shield to buffer the interior from the urban wind tunnel of the adjacent College Street, a major city thoroughfare.

Energy conserving measures were applied to the laboratory systems to minimize energy use while meeting stringent laboratory standards. Separate plumbing systems were developed to avoid contamination of the environment by laboratory waste and to collect rainwater for distribution to the Winter Garden.

HH Angus met the challenges of this unique facility by designing and engineering systems that will allow this building to stand the test of time as an example of innovative sustainable design. 

SERVICES
Mechanical Engineering | Electrical Engineering | CCTV | Security and Communications | Preliminary Vertical
 Transportation Review


PROJECT FEATURES
Size: 221,000 ft2 | Status: Completed 2006


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Double faç
ade curtain wall was introduced to reduce noise infiltration & decrease heat loss | Energy conservation measures | Full Building Automation System designed


Integrating new and old

The CCBR is a 13-storey glass tower surrounded by historical buildings. With a gross floor area of 221,010 ft2, it is an outstanding example of sustainable design, comprising a range of variable space requirements: highly controlled laboratory floors are located beside naturally ventilated public spaces like the Winter Garden.

Improving efficiency with BAS

A full building automation system was designed for this building.

Siemens Canada

Algonquin College Trigeneration Plant

HH Angus was retained to design a trigeneration plant for Ottawa’s Algonquin College. Our scope included review of Siemens’ PSUI application to IESO, and assisting with their application. Because the existing central utility plant (CUP) was not large enough to accommodate new plant systems, our team developed a pre-engineered building to be built adjacent to the existing CUP.

As Prime Consultant, HH Angus retained Milman and Associates to undertake the required structural engineering, including a roof design to accommodate the cooling towers, rad cooler and transformer. An additional mezzanine was added to house auxiliary equipment.

In order to maximize the usable heat during summer months, a 350 ton absorption chiller, using double effect flue gas and hot water, was detailed. The 2 MW reciprocating trigeneration plant features selective catalytic reduction units and a heat recovery boiler.

Some project challenges included:

  • Integrating and commissioning a trigeneration system into an operating facility
  • Noise constraints due to proximity of CUP to College operations
  • Space constraints due to pre-engineered building
  • Footprint was maxed out based on site restrictions; HH Angus had to take into account future co-gen, chiller and ancillaries
  • Ongoing upgrades in CUP heating and cooling, which HH Angus coordinated with another consultant
  • Operating flexibility required for both parallel and island operation
  • Solutions included: designed mezzanines in the existing CUP to house equipment and accommodate new, pre-engineered building for the second cogen and chiller; and rigorous scheduling coordination with Utility and College operations staff

SERVICES
Prime Consultant | Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Status: Completed 2017


LOCATION 
Ottawa, Ontario


KEY SCOPE ELEMENTS
Review of PSUI application to IESO | 350-ton absorption chiller | 2 MW reciprocating trigen plant with selective catalytic reduction units & heat recovery boiler


Minimizing Disruption

All new equipment was connected to existing systems, with electrical connections restricted to well-planned shutdowns, resulting in minimal disruption to the ongoing operations of the campus.

SickKids

Peter Gilgan Centre for Research & Learning, ICAT

Creative solutions were required to accommodate the extremely intense and sophisticated computer systems within the architectural constraints of this building.

Angus Connect provided a Canadian first — the design and implementation of an HPC-High Performance data centre in a healthcare research facility.

Our recommended technical solution involved an overhead communications wiring system design, using multiple cable trays with an integral cable access management system. This innovative system design solution resulted in considerable space savings over a conventional system. A conventional raised floor communications cabling system was not an option due to space restrictions.

This Data Centre, which supports data cabinets with high performance servers that use 60 KW load, required very large and fully redundant Uninterruptible Power Supplies (UPS) and emergency generator systems to support the critical loads.

The facility has been certified LEED® Gold. The shell and core design were already well along when the Hospital’s High Performance computing group announced their intention to locate all of their high performance computing equipment into the new Data Centre.

SERVICES
Mechanical Engineering | Electrical Engineering 
| IT Communications Design |  Lightining Design


PROJECT FEATURES
Size: 740,000 ft2  | Status: Completed 2013


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Introduced innovative system solutions for urban-space saving, along with sophisticated computer systems | LEED Gold Certified


Ministry of the Attorney General/Infrastructure Ontario

Thunder Bay Consolidated Courthouse

This multi-storey building features 15 courtrooms, 4 conference/settlement suites, and Ontario’s first aboriginal conference settlement suite. It is LEED® Silver-certified, with barrier-free design, infrared hearing assistance and barrier-free witness stands and jury boxes.

HH Angus provided electrical engineering design, vertical transportation engineering and lighting design for the 8-storey building (seven above grade and one below grade for parking and holding cells). The electrical design features 100% emergency generator backup, UPS (uninterrupted power supply) and inverter lighting systems.

Lighting design included interior lighting, exterior building perimeter and parking. Exterior lighting was designed to be ‘dark sky compliant’, and all lighting design and luminaires targeted LEED® Silver. Custom lighting was designed for the aboriginal conference settlement suite, and featured low energy metal halide T5 fluorescent uplighting for the domed ceiling surfaces and LED downlights for general lighting.

Vertical transportation systems were designed to provide dedicated service for each of the primary forms of facility traffic: public, private (judicial), prisoner and building services. There are twelve elevators in total, the majority of which are Machine-Room-Less (MRL) gearless traction type. This elevator type represented the latest technological advance for energy efficiency and operational performance for low-to-medium rise buildings. Custom cab finishes for the public and private elevators complement the building’s interior design, while the prisoner elevators include an interior partition for the safe movement of accused by security staff.

SERVICES
Electrical Engineering | Lighting Design | Vertical Transportation Design


PROJECT FEATURES
Status: Completed 2014


LOCATION 
Thunder Bay, Ontario


KEY SCOPE ELEMENTS
Designed transportation system to provide dedicated service for each form of facility traffic | Custom lighting design for specific conference suite featured low metal halide T5 fluorescent uplighting| MRL gearless traction type was used for - the majority of the elvators| LEED Silver


Built to last

The Courthouse was a design-build-finance-maintain project, with life-cycle repair and renewal responsibilities that ensure the courthouse (including heating and cooling systems, windows, floors, roofing structures and hard landscaping) is kept in excellent working condition over the 30-year period.

 

20 King Street West

Damage Investigation & Remediation

 
 
 

Following a hydro vault explosion and fire at 20 King Street West, HH Angus was engaged to provide mechanical and electrical engineering consulting services for the subsequent investigation, restoration, rehabilitation and modernization of the base building core and shell.

20 King Street West is a 299, 635 ft2 office tower in Toronto’s downtown financial district. It consists of 12-storeys above grade, including the mezzanine, truss, upper truss and penthouse, as well as two levels below grade.

HH Angus completed an extensive remediation and renewal of all mechanical and electrical components and major equipment that had been severely contaminated or damaged by the fire.

The updates to the mechanical and electrical systems of the now restored and modernized building ensure that it is a much more resilient facility that meets current standards and is able to better withstand potential future incidents.  

SERVICES
Mechanical Engineering | Electrical Engineering 


PROJECT FEATURES
Size: 299,635 ft2 | Status: Completed 2025


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Mechanical and electrical consulting services for investigation, restoration and rehabilitation of base building core and shell | Remediation and renewal of all mechanical and electrical components and major equipment