Lonsdale Energy Corporation

Heat Recovery Feasibility Study

HH Angus conducted a study to evaluate the feasibility of exhaust air heat recovery from the Global Relay (GR) data centre facility at 22 Gostick Place in North Vancouver, BC.

Some of the key aspects of the study included:

  • The location and footprint of the heat recovery system components were studied within the context of considerable site constraints. The study evaluated the design, construction, and cost considerations for the implementation of the proposed heat recovery system.
  • We investigated available heat pump technologies that would be appropriate for recovering waste heat and would satisfy the LEC DES requirements.
  • The energy recovered would be used by a water source heat pump to provide hot water to the local LEC District Energy System (DES).
  • A water source heat pump system was proposed as the best solution to provide the ability to recover heat from the building ventilation system. The new system would recover heat from the GR facility and would transfer this recovered heat via a hot water loop to the local LEC DES.
  • Heat recovery is feasible for the facility and can provide up to 1,100 kW of heating capacity to the LEC DES.
  • Constraints to the design of the heat recovery system were also identified, and included:

(i) the quantity of air exhausted from the facility is not fixed and ranges at each exhaust plenum on a seasonal basis and depending on outdoor air temperature – this impacts how much heat can be recovered at a given time;

(ii) the minimum and maximum exhaust air temperatures range from 30°C to 43°C (86°F to 110°F) - the temperature of the exhaust air will influence how much heat can be recovered from the exhaust air; and,

(iii) the cross-sectional area available for the heat recovery coil - the more cross-sectional area that is available for a given amount of heat transfer, the less deep the coil must be (and less airside pressure drop penalty is incurred).

The study concluded that a purpose-built containerized heat pump system would be the most suitable solution to meet the needs of the project. This new containerized structure would be conveniently located adjacent to the GR facility and would exhibit the same architectural character as the existing facility. The proposed heat pump system would include one heat pump unit (based on Emerson Heat Pumps) and four heat recovery water pumps. Control valves, piping accessories, ventilation, lighting, and system controls would all be included in the proposed pre-fabricated containerized enclosure.

Outdoor hydronic piping would connect the heat pump enclosure to the GR facility and the proposed hydronic heat recovery coil system. The heat recovery coil system would consist of four new heat recovery coils placed within the existing facility exhaust air plenums. The existing exhaust fan motors would have to be upgraded in order to address the additional pressure drop introduced by the new heat recovery coils. This fan motor upgrade would also trigger upgrades to the existing electrical infrastructure.

SERVICES
Prime Consultant | Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Size: 5,600,000 ft2 | Status: Ongoing


LOCATION 
Vancouver, British Columbia


KEY SCOPE ELEMENTS
Feasibility study | Heat recovery


Oakridge Centre

Redevelopment

Vancouver's Oakridge Centre is a visionary mixed-use redevelopment of approximately 4.3 million square feet, plus residential areas. The work will be completed in two phases and will encompass a vibrant mix of retail, office, residential, cultural, and civic spaces, along with a landscaped rooftop park.

HH Angus provided fire protection Engineer of Record design services for approximately 2.5 million ft2 of the retail, parkade and service areas, as well as peer review of the central plant engineering.

An interesting aspect of our project scope is the multiple water parcels and phasing, which meant needing to design each section with expansion in mind. Our project design work is being completed entirely in Revit, with a program called Autosprink that allows us to place the sprinkler heads and then connect them to provide highly-detailed hydraulic calculations. This involves laying out heads, branches and mains, and performing all calculations to present for sprinkler permits. The design also includes multiple fire pumps and a back-up cistern to store water on-site for use in the event of waterflow emergency.

The project requires a strong focus on effective communication. Our team's seamless collaboration with multiple partners and consultants through open and inclusive communication channels encouraged the flow of information and ideas, fostering creative problem-solving and innovative solutions. These often required coming up with alternative code-compliant solutions.

Despite only joining the project during design development, we successfully applied cutting-edge software and project management techniques to deliver our assigned scope within the designated time frame. As a result, we have been awarded additional project scope and the opportunity to further contribute to the overall success of the project.

SERVICES
Fire Protection, Phase 1A & B | District energy plant peer review


PROJECT FEATURES
2,600 residences | Office space for 3,000 workers across multiple towers | 2.5 million ft2 of retail, parkade and service areas | Status: Completion estimated for 2027


LOCATION 
Vancouver, British Columbia


KEY SCOPE ELEMENTS
Our team's close collaboration with multiple partners and consultants through open and inclusive communication channels encouraged productive flow of information and ideas, fostering creative problem-solving and innovative solutions


Photos courtesy of Adamson Associates Architects.

Efficient resource allocation

Given the vast scale of the project, it has been important to identify critical resource needs and to optimize their deployment in order to avoid bottlenecks.

 

Island Health | Infrastructure BC

Cowichan District Hospital Replacement

 
 
 

Three times the size of the existing facility, the new Cowichan District Hospital on Vancouver Island will reflect BC’s new model for integrated healthcare by placing patients, families and communities at the centre of care decisions throughout the continuum of care. The goal is to reduce wait times, improve care and outcomes, and provide better value for healthcare expenditures.

 

HH Angus is part of the design team under The EllisDon Healthcare Infrastructure Consortium, and is providing mechanical and electrical consulting engineering to the 607,000+ ft2 project. The new facility, with an estimated budget of $1.44 Billion, will have 204 private or semi-private beds to support best practices for infection prevention and control, with the capacity for increased beds as population growth warrants. The emergency department will be three times the size of the current ER and is expected to accommodate 42,000 visits by 2035.  Additional services include mental health facilities featuring a 20-bed inpatient unit and dedicated ICU, culturally safe services and spaces, 7 operating rooms, increased CT scanning capacity, and built-in MRI facilities.

Island Health specified a low energy, low carbon design solution. HH Angus, working with the rest of the design team, devised a number of innovative solutions and the project is now aiming to be Canada’s first CaGBC Net Zero Carbon hospital and first fully electric hospital. As well, the project is targeting LEED Gold certification.

This is the first Alliance Project Delivery for HH Angus, with many differences from a conventional project delivery model. It is a far more collaborative process, where the owner, contractor and design team act as one entity. Both the quality of the submitted design and the ability of the team to work together were key factors in the proponent evaluation.

SERVICES
Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Alliance project delivery model | Status: Construction completion estimated for end of 2026, and opening for patients in 2027 | 607,000+ ft2 | 204 private or semi-private beds | Mental health services with a 20-bed inpatient psychiatry unit | Culturally safe spaces and services


LOCATION 
The unceded traditional territory of Cowichan Tribes, North Cowichan, British Columbia


KEY SCOPE ELEMENTS
Targeting to be the first fully electric hospital in BC | Targeting LEED Gold | New hospital will be 30% more energy efficient and 60% more water efficient than the current hospital, with a 75% reduction in greenhouse gas emissions


Creative Energy

District Energy and Low Carbon Steam Plants

HH Angus is serving as mechanical and electrical engineers on Creative Energy's two new steam plant projects in downtown Vancouver.

For Creative Energy’s Beatty Plant, the existing gas plant is being replaced entirely by a new gas plant consisting of three 58MW and one 44MW industrial water tube boilers operating at 1.38 MPa (megapascal pressure). The boilers consist of the latest burner technology and FGR (flue gas recirculation), with guaranteed nitrogen oxide emissions of 8.5 parts per million. This plant is being built as part of Phase 1 of the new West Bank Beatty Street development. Careful phasing and design of the new plant on the existing site is required to maintain full operations of the existing plant until switchover can be completed so the plant can continue to serve its clientele of 200 buildings during the construction. 

HH Angus is also working with Creative Energy in the development of their new Low Carbon Steam Plant, serving as lead mechanical engineers and medium voltage and low voltage electrical engineers. 

The new steam plant is being developed in conjunction with the new West Bank Development at the intersection of Beatty St. and West Georgia and will feature electric boilers.  These electric boilers are being introduced by Creative Energy as part of their low carbon strategy.

SERVICES
Mechanical Engineers | Medium and Low Voltage Electrical Engineers


PROJECT FEATURES
Low carbon district energy steam plant | Part of West Bank Steam development | Status: ongoing


LOCATION 
Vancouver, British Columbia


KEY SCOPE ELEMENTS
3 X 58MW and 1 X 44MW industrial water tube boilers | Electric boilers being installed for low carbon steam plant


Image courtesy : Parkin Architects Limited

Royal Inland Hospital

New Patient Care Tower

Royal Inland Hospital is a tertiary level acute care hospital serving a catchment area of approximately 220,000 residents in the city of Kamloops and throughout the Thompson, Cariboo and Shuswap regions of British Columbia.  

The 290,625 ft2 new Phil & Jennie Gaglardi Patient Care Tower (PCT) is a nine-storey building that includes a surgical floor, 13 operating suites, patient floors for mental health and medical/surgical beds, a neurosciences and trauma unit, perinatal centre, labour and delivery rooms, and neonatal intensive care unit. There are also two underground parking levels, administrative and clinical spaces on three lower floors, an intermediate mechanical floor, and 3 inpatient levels topped by a penthouse containing the heating, cooling, and emergency power plant.

Phase 2 consists of a number of renovations within the existing facility, including a completely renovated Emergency Department. Phase 1, which opened in July 2022, has achieved LEED Gold certification. HH Angus provided mechanical and electrical design services for the PCT, which was constructed adjacent to the existing hospital under a P3 contract.

Designed with direct input from local healthcare workers, the PCT streamlines access to hospital services through a single main entrance. A new post-anaesthetic recovery room in the adjacent existing facility’s renovated space will be constructed in Phase 2. Other clinical spaces include a substance use inpatient unit, a child and adolescent mental health crisis intervention program, maternal and child services, and respiratory therapy services. Non-clinical spaces include reception, patient registration, a rooftop helipad, underground parkade, retail space and a new home for the Royal Inland Hospital Foundation.


The mechanical design included energy-efficient heating and cooling systems with a variety of heat recovery features. The project had an ambitious energy use target and HVAC systems were designed with this benchmark in mind. Current estimates predict 24% savings in energy costs.

HH Angus was able to solve a problem the Hospital was having with the existing distributed hot water boilers by upsizing the new plant to serve the majority of the hospital campus. The ventilation design includes redundant capability and outbreak control, and exhaust air heat recovery, as well as providing for future flexibility.

The Health Authority expressed an interest in the ability to conduct smudging ceremonies in any patient room without having to make significant modifications to the current ventilation design and infrastructure included in the project.  HH Angus found a means for using the ventilation system as originally designed and applying a unique operational sequence to minimize capital cost changes while providing the ability to undertake smudging activities in any of the patient rooms on the Medical/Surgical and Mental Health Adaptive inpatient units.

A central focus of the design team was to work with the commissioning team to ensure proper operation of the new facility. The design team is now helping monitor ongoing operations to recover and reuse as much waste heat as possible. This effort concentrates on the heat recovery chiller plant operation to meet as much of the building’s heating load as possible using waste heat. This contributes to minimizing the production of GHGs from heating energy sources and, in turn, improves decarbonization for the new facility. New electrical services include a 25 KV service from BC Hydro serving a new outdoor substation powering the existing campus and PCT. New redundant 25kV to 600V FR3 transformers feeding the new tower were provided in the new main electrical room. Three new 2MVA diesel generators provide emergency power backup to the new patient care tower and the rest of the existing campus if utility power is lost. 600V distribution on both utility and generator power are provided with high resistance grounding to increase resiliency and reliability in the event of a single ground fault. Numerous low voltage systems were provided including fire alarm, lighting control system complete with daylight harvesting, circadian rhythm tunable lighting in the Neo-natal ICU, and electrical metering.

SERVICES
Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Size: 290,625 ft2 | Status: Phase 1 completed 2022


LOCATION 
Kamloops, British Columbia


KEY SCOPE ELEMENTS
Ongoing technical infrastructure upgrades | Installed heat exchangers to link the cooling plant to the Deep Lake cooling system | LEED Gold certified


Helipad Design

The rooftop helipad is served by a number of mechanical and electrical systems to help keep the pad surface clear of snow and ice and to provide appropriate safety lighting to meet all requirements. Fire protection and life safety systems, such as foam suppression, were carefully coordinated and designed to ensure full coverage and containment in the event of a discharge.

Systems Integration

 Integration with the existing hospital systems was a significant challenge and required numerous connections to the adjacent facility. Requiring multiple site visits, it was determined the two facilities could be successfully integrated by enclosing an outdoor courtyard between them, transforming it into a four-season space that will benefit patients, staff and visitors. On the electrical side, backfeeding the existing facility with new 600V HRG generator backup required careful analysis of existing distribution to ensure compatibility for all existing equipment to the new 3 wire distribution on emergency power. A detailed sequence of operations for black start sequence and retransfer of automatic transfer switches to normal was developed and commissioned to ensure proper operation for different failure scenarios.