Siemens Canada

Algonquin College Trigeneration Plant

HH Angus was retained to design a trigeneration plant for Ottawa’s Algonquin College. Our scope included review of Siemens’ PSUI application to IESO, and assisting with their application. Because the existing central utility plant (CUP) was not large enough to accommodate new plant systems, our team developed a pre-engineered building to be built adjacent to the existing CUP.

As Prime Consultant, HH Angus retained Milman and Associates to undertake the required structural engineering, including a roof design to accommodate the cooling towers, rad cooler and transformer. An additional mezzanine was added to house auxiliary equipment.

In order to maximize the usable heat during summer months, a 350 ton absorption chiller, using double effect flue gas and hot water, was detailed. The 2 MW reciprocating trigeneration plant features selective catalytic reduction units and a heat recovery boiler.

Some project challenges included:

  • Integrating and commissioning a trigeneration system into an operating facility
  • Noise constraints due to proximity of CUP to College operations
  • Space constraints due to pre-engineered building
  • Footprint was maxed out based on site restrictions; HH Angus had to take into account future co-gen, chiller and ancillaries
  • Ongoing upgrades in CUP heating and cooling, which HH Angus coordinated with another consultant
  • Operating flexibility required for both parallel and island operation
  • Solutions included: designed mezzanines in the existing CUP to house equipment and accommodate new, pre-engineered building for the second cogen and chiller; and rigorous scheduling coordination with Utility and College operations staff

Prime Consultant | Mechanical Engineering | Electrical Engineering

Status: Completed 2017

Ottawa, Ontario

Review of PSUI application to IESO | 350-ton absorption chiller | 2 MW reciprocating trigen plant with selective catalytic reduction units & heat recovery boiler

Minimizing Disruption

All new equipment was connected to existing systems, with electrical connections restricted to well-planned shutdowns, resulting in minimal disruption to the ongoing operations of the campus.