Billy Bishop Toronto City Airport

Expanded Air Terminal Building 

When the new 150,000 ft2 terminal first opened to the public in 2010, the airline expected to almost double the number of passengers from the year before. Phase Two included 10 bridged aircraft gates and two additional passenger lounges. The terminal includes a mix of retail, food services, duty-free, car rentals and other amenities.

The large arrivals hall area, along with the increasing number of people using it, required a specialized heat recovery system. HH Angus designed a high efficiency enthalpy heat wheel system using outdoor air supply.

Among the benefits of this heat recovery system are reduced operating costs from recovering heat that would otherwise be lost by venting to the outside. In turn, this allows for a reduction in the size and capacity needed for the heating and cooling plant that serves the system.

An exterior sprinkler system for the apron area was included in our mechanical design. This system protects building occupants in the event of a jet fuel fire on the tarmac.

Some of the interesting design challenges on this project included the integration of the sanitary sewage system with the existing Terminal system. The Toronto Islands site has no gravity drainage and requires a pumping system for sanitary sewage. Also, the site is a live airport operation, which presented unique challenges regarding phasing of services.

Our elevator system designs responded to user needs for accessibility, safety, reliability and operational efficiency. Based on anticipated traffic numbers, plus luggage, a single large roped-hydraulic elevator (2,270 kgs) serves travelers in the corridor leading from the Ferry Building. Adjacent to this elevator, three reversible escalators serve the large numbers of passengers travelling without luggage, or with small carry-on baggage. These escalators are direction-based upon dynamic requirement.

The terminal’s airside area is separated into domestic and trans-border. Each has been fitted with a single, smaller roped-hydraulic passenger elevator (1590 kgs), and a single reversible escalator for passengers with carry-on bags only, again direction-based on dynamic requirement.

Mechanical Engineering | Vertical Transportation

Size: 150,000 ft2 | Status: Completed 2011

Toronto, Ontario

High efficiency enthalpy heat wheel system using outdoor air supply for arrival hall area | Engineered 10 bridged aircraft gates, 2 new passenger lounges along with a mix of retail, food services, duty-free, car rentals and other amenities | Geothermal heat rejection for cooling plant | Implemented recapture and reuse of all rainwater | Reversible escalator | Exterior sprinkler system for the apron area to protect against fuel fires