Lonsdale Energy Corporation

Heat Recovery Feasibility Study

HH Angus conducted a study to evaluate the feasibility of exhaust air heat recovery from the Global Relay (GR) data centre facility at 22 Gostick Place in North Vancouver, BC.

Some of the key aspects of the study included:

  • The location and footprint of the heat recovery system components were studied within the context of considerable site constraints. The study evaluated the design, construction, and cost considerations for the implementation of the proposed heat recovery system.
  • We investigated available heat pump technologies that would be appropriate for recovering waste heat and would satisfy the LEC DES requirements.
  • The energy recovered would be used by a water source heat pump to provide hot water to the local LEC District Energy System (DES).
  • A water source heat pump system was proposed as the best solution to provide the ability to recover heat from the building ventilation system. The new system would recover heat from the GR facility and would transfer this recovered heat via a hot water loop to the local LEC DES.
  • Heat recovery is feasible for the facility and can provide up to 1,100 kW of heating capacity to the LEC DES.
  • Constraints to the design of the heat recovery system were also identified, and included:

(i) the quantity of air exhausted from the facility is not fixed and ranges at each exhaust plenum on a seasonal basis and depending on outdoor air temperature – this impacts how much heat can be recovered at a given time;

(ii) the minimum and maximum exhaust air temperatures range from 30°C to 43°C (86°F to 110°F) - the temperature of the exhaust air will influence how much heat can be recovered from the exhaust air; and,

(iii) the cross-sectional area available for the heat recovery coil - the more cross-sectional area that is available for a given amount of heat transfer, the less deep the coil must be (and less airside pressure drop penalty is incurred).

The study concluded that a purpose-built containerized heat pump system would be the most suitable solution to meet the needs of the project. This new containerized structure would be conveniently located adjacent to the GR facility and would exhibit the same architectural character as the existing facility. The proposed heat pump system would include one heat pump unit (based on Emerson Heat Pumps) and four heat recovery water pumps. Control valves, piping accessories, ventilation, lighting, and system controls would all be included in the proposed pre-fabricated containerized enclosure.

Outdoor hydronic piping would connect the heat pump enclosure to the GR facility and the proposed hydronic heat recovery coil system. The heat recovery coil system would consist of four new heat recovery coils placed within the existing facility exhaust air plenums. The existing exhaust fan motors would have to be upgraded in order to address the additional pressure drop introduced by the new heat recovery coils. This fan motor upgrade would also trigger upgrades to the existing electrical infrastructure.

SERVICES
Prime Consultant | Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Size: 5,600,000 ft2 | Status: Ongoing


LOCATION 
Vancouver, British Columbia


KEY SCOPE ELEMENTS
Feasibility study | Heat recovery


Creative Energy

District Energy and Low Carbon Steam Plants

HH Angus is serving as mechanical and electrical engineers on Creative Energy's two new steam plant projects in downtown Vancouver.

For Creative Energy’s Beatty Plant, the existing gas plant is being replaced entirely by a new gas plant consisting of three 58MW and one 44MW industrial water tube boilers operating at 1.38 MPa (megapascal pressure). The boilers consist of the latest burner technology and FGR (flue gas recirculation), with guaranteed nitrogen oxide emissions of 8.5 parts per million. This plant is being built as part of Phase 1 of the new West Bank Beatty Street development. Careful phasing and design of the new plant on the existing site is required to maintain full operations of the existing plant until switchover can be completed so the plant can continue to serve its clientele of 200 buildings during the construction. 

HH Angus is also working with Creative Energy in the development of their new Low Carbon Steam Plant, serving as lead mechanical engineers and medium voltage and low voltage electrical engineers. 

The new steam plant is being developed in conjunction with the new West Bank Development at the intersection of Beatty St. and West Georgia and will feature electric boilers.  These electric boilers are being introduced by Creative Energy as part of their low carbon strategy.

SERVICES
Mechanical Engineers | Medium and Low Voltage Electrical Engineers


PROJECT FEATURES
Low carbon district energy steam plant | Part of West Bank Steam development | Status: ongoing


LOCATION 
Vancouver, British Columbia


KEY SCOPE ELEMENTS
3 X 58MW and 1 X 44MW industrial water tube boilers | Electric boilers being installed for low carbon steam plant


Image courtesy : Parkin Architects Limited

Centre hospitalier de l'Université de Montréal

Temporary Energy Centre

The CHUM temporary energy centre was built to supply Saint-Luc Hospital with steam, cooling, heating and emergency power services during the demolition of the existing energy centre and the construction of the new CHUM hospital and its energy centre. The temporary energy centre operated until commissioning of the new permanent energy centre was completed.

HH Angus was retained to study the equipment and systems required for this installation, and to prepare the phasing plan. We were also responsible for development of the conceptual design and the detailed design, and for engineering services over the course of construction and commissioning of the provisional energy centre.

This project resulted in a very complex power plant constructed in a constrained space on top of the loading dock building. The six spiral tube boilers supplied 860 kPa (125 psig) of steam to each mechanical room serving the existing facilities at Saint-Luc Hospital, the CHUM Research Centre, the Édouard Asselin and André Viallet Pavilions. As well, provision was made for the construction activities for the new facility. The electrical supply was upgraded from 12.5kV to 25kV, with transformers distributed throughout the site.

The steam piping to each building had to be routed so as not to interfere with construction of the massive P3 CHUM mega-hospital. Provisions for future connections were made to reduce interruptions of the steam supply to the CHUM Research Centre.

Working in collaboration with the Constructor, the general contractor and the subcontractors, we were able to apply innovative design approaches to reduce the cost of the energy centre. This was achieved while maintaining the facility’s established life cycle parameters, and without compromising technical or operational quality.

A very important aspect of our work was ensuring that the connection of the new temporary energy centre and the disconnection and the decommissioning of the existing energy centre would have no impact on the day-to-day operations of the existing health care facility.

SERVICES
Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Status: Completed 2012 | Disconnection and decommissioning of existing energy centre was achieved with no impact on day to day operations of existing hospital | Innovative design approaches resulted in cost reductions for energy centre


LOCATION 
Montréal, Québec


KEY SCOPE ELEMENTS
P3 | Steam, cooling, heating and emergency power services | A very complex power plant in a constrained space | Routing of steam piping designed to avoid interference with construction of P3 mega hospital  


Exterior of Centre hospitalier de l'Université de Montréal
Interior of the energy centre Centre hospitalier de l'Université de Montréal

CREIT

Bloor-Dundas District Energy Feasibility Study

HH Angus was engaged to conduct a feasibility study for a Low Carbon District Energy Plant serving a new, three million square foot mixed use residential and commercial development along Bloor Street in Toronto.

The full development is being implemented in several stages over ten years. HH Angus provided Prime Consultant and Mechanical and Electrical Engineering services, and developed a conceptual framework for the study.

The study considered a combination of traditional and renewable energy sources to provide heating and cooling, reviewing a range of options that included the following:

  • Condensing hot water boilers, efficiency up to 90-95%
  • Centrifugal water-cooled magnetic bearing chillers
  • Water source heat pumps (heat recovery chillers) to provide simultaneous cooling and heating
  • Air source heat pumps to provide simultaneous cooling and heating
  • Ground source heat pump system
  • Ambient loop system
  • Sewer heat recovery system
  • Combined Heat & Power (CHP) system to generate power using a gas-fired generator and to provide heat using waste engine heat, with overall generator efficiency up to 80%. CHP can be used as backup power source and to reduce energy cost during periods of peak cooling and electrical demand.

HH Angus conducted calculations of estimated heating, cooling and electrical loads, plus energy consumption for future development, establishing options for the arrangement of the District Energy plant, including provision for expansion to provide heating and cooling to future developments in the neighbourhood.

Our study scope also included tentative District Energy plant layout and area requirements, capital budget, operating costs and NPV estimates for each option, as well as analysis of results and corresponding recommendations.

SERVICES
Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Size: Low carbon district energy study | Due diligence engineering report | Status: Completed 2018


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Assessment of district energy plant designs to serve 3 million ft2 of mixed use development |
Calculation of estimated heating, cooling and electrical loads and energy consumption for future development | Analysis of results and corresponding recommendations for optimal design | Consideration of traditional and renewable energy sources


Mirvish Village

Central Utility Plant

Mirvish Village is reimagining a 4.5 acre section of Toronto's Bloor/Bathurst neighbourhood, including the former site of the the iconic Honest Ed's store, a beloved Toronto landmark. Featuring four high-rise, one low-rise and twelve heritage buildings*, the mixed-use site will be home to more than 2000 residents.

HH Angus is working with Creative Energy Developments to provide mechanical and electrical engineering services for the Mirvish Village central utility plant, which includes a combined heat and power plant (CHP), a boiler plant, and a cooling plant. The CHP plant will include an 800 KW generator set with auxiliaries and heat recovery system. The generator is expected to run continuously to provide power to the complex.

Heat recovery consists of two systems: High Temperature to provide heat to buildings, and Low Temperature to provide additional heating for a winter snow melting system and swimming pool heating.  The boiler plant will include installation of four condensing hot water boilers, with the option for two additional boilers in future. All boilers will have an output of 3.1 MW.

The cooling plant will include installation of two water-cooled chillers, operating at 1200 tons each. One chiller is a magnetic bearing chiller with variable frequency drive (VFD), and the other is a centrifugal chiller with VFD. As well, two cooling towers at 1200 tons each will be installed on the roof. 

Central distribution piping from the plant will provide hot water and chilled water to multiple energy transfer stations, with heating, cooling, and domestic hot water heat exchanges for each building within the complex.

The photo-voltaic solar system will have a capacity of 103KW, 480V. HH Angus is providing direction for locating the installation, coordinating with the PV supplier for modeling the panel direction and angle for optimal PV output, developing technical connection requirements with Toronto Hydro, and identifying requirements for parallel generation with the central utility plant.

We also assisted the client with a successful incentive funding application. Ultimately, the incentive was not applicable due to schedule changes, which meant the project could not meet the incentive deadline.

* The World Architecture News Awards
This international organization recognized Mirvish Village with a Bronze Award in their 2023 world-wide competition. The project won in the category of 'Future Projects'.  According to the judges, "Integrating old and new, small-scale buildings and towers, it proposes a dynamic, dense and diverse micro-city with the perfect scale to enjoy as a pedestrian."

Renderings courtesy of Westbank Corp.

SERVICES
Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Status: Completion 2022


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Combined Heat and Power Plant | Boiler Plant  | Cooling Plant | High Temperature and Low Temperature Heat Recovery Systems | Photo Voltaic System


Metering Strategies

Our scope also included developing thermal and electrical metering strategies within a microgrid system, design of operation for gas-fired emergency generators in electrical peak shaving mode, and the design of a roof mounted PV solar system.

Sustainable design

Mirvish Village is being designed to meet LEED® Platinum ND standards, and will feature sustainable transportation options.