Sunnybrook Health Sciences Centre 

Garry Hurvitz Brain Sciences Centre

“The Garry Hurvitz Brain Sciences Centre will revolutionize the future of brain health like never before. It will be a global hub of innovation that will accelerate the discovery of the next generation of treatments, prevention and possible cures to the world’s most debilitating brain conditions.”*

HH Angus is providing mechanical and Electrical engineering for this 118,285 ft2, three-storey above-grade structure. The building will be constructed within a dense urban campus between existing building wings and will be connected to the main hospital circulation spine, with flexibility provided to accommodate future expansion.

Our project scope includes:

  • Expansions to existing infrastructure, including a new 1600 ton centrifugal 4160 volt Chiller;
  • A major modification to the Emergency Power System to provide emergency power to at least one chiller and the chilled water distribution system;
  • New steam service and high voltage electrical services to the new building from the existing power plant
  • A significant Information Technology service and distribution system, including fibre cable connections to the hospital’s existing Core Distribution Rooms, new network hub room components, including network switches and all on-floor cable/outlet systems
  • Significant expansions to the existing Building Automation System, central electrical metering system, fire alarm system, security system, CCTV system, nurse call system and Code White systems.

The new building includes:

  • Mechanical and electrical services in the basement designed to provide for the current construction, as well as a possible future four-storey addition
  • Adult In-Patient Mental Health Unit and PICU Unit on the ground floor, both with access to outdoor courtyards
  • Child & Youth Mental Health Unit
  • Circadian Study Unit on 1st Floor
  • Neuromodulation Treatment Unit, Enhanced Examination, Teaching and Research units on the 2nd Floor

The Sunnybrook M&E services tunnel is a complicated space. Because this is a new building on an existing site and represents a major expansion to the campus, connections to existing buildings with multiple M&E ties are required.

Among the interesting challenges of this project was obtaining the required mechanical and electrical services spaces. The larger they became, the more they impacted the functional programming and the project budget. Compromises were made regarding ceiling heights, and collaboration with facilities management staff helped in obtaining the space required.

As well, the main entrance “glass box” presented some unique mechanical design challenges. Ventilating a two-storey structure with no exposed services required innovative engineering, including ventilating from below.

In designing the building systems for this project, our team devoted special attention to providing a living space that offers an excellent therapeutic environment for the brain-injured patient while, at the same time, ensuring the safety of both patients and staff; in particular, preventing any opportunity for self-harm by patients.

Within HH Angus’ lighting scope, LED linear fixtures set the stage for modern lighting aesthetics used throughout the new, state-of-the-art centre, including corridors, inpatient bedrooms, the main triple height lobby, and the exterior soffits. The efficient LED non-glare, dimmable lighting will be connected to a centralized lighting control system. The provided lighting management software enables facility managers to monitor, maintain and control the entire networked lighting control system, including schedules and energy usage. 

SERVICES
Mechanical Engineering | Electrical Engineering | Plumbing | Lighting Design | Audio-Visual Design | Communications Design | Condition Assessment | Feasibility Study


PROJECT FEATURES
Size: 118,285 ft2 | Status: Ongoing | Adult In-Patient Mental Health Unit | PICU Unit | Child and Youth Mental Health Unit | Circadian Study Unit | Neuromodulation Treatment Unit | Complex M&E services tunnel


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Expansion to existing infrastructure | Major modification to Emergency Power System | New steam service and high voltage electrical services | Significant IT service and distribution system | Expansion to numerous systems, including  BAS, electrical metering, fire alarm, security, CCTV, nurse call and Code White


View of the main entrance “glass box”

Innovative engineering

The main entrance “glass box” presented some interesting mechanical design challenges. Ventilating a two-storey structure with no exposed services required innovative engineering, including ventilating from below.

Experience counts 

HH Angus’ many years of working on the Sunnybrook campus and our familiarity with this particular space aided significantly in designing the connections to the existing services.

Interior of a patient room

CREIT 

Bloor-Dundas District Energy Feasibility Study

HH Angus was engaged to conduct a feasibility study for a Low Carbon District Energy Plant serving a new, three million square foot mixed use residential and commercial development along Bloor Street in Toronto.

The full development is being implemented in several stages over ten years. HH Angus provided Prime Consultant and Mechanical and Electrical Engineering services, and developed a conceptual framework for the study.

The study considered a combination of traditional and renewable energy sources to provide heating and cooling, reviewing a range of options that included the following:

  • Condensing hot water boilers, efficiency up to 90-95%
  • Centrifugal water-cooled magnetic bearing chillers
  • Water source heat pumps (heat recovery chillers) to provide simultaneous cooling and heating
  • Air source heat pumps to provide simultaneous cooling and heating
  • Ground source heat pump system
  • Ambient loop system
  • Sewer heat recovery system
  • Combined Heat & Power (CHP) system to generate power using a gas-fired generator and to provide heat using waste engine heat, with overall generator efficiency up to 80%. CHP can be used as backup power source and to reduce energy cost during periods of peak cooling and electrical demand.

HH Angus conducted calculations of estimated heating, cooling and electrical loads, plus energy consumption for future development, establishing options for the arrangement of the District Energy plant, including provision for expansion to provide heating and cooling to future developments in the neighbourhood.

Our study scope also included tentative District Energy plant layout and area requirements, capital budget, operating costs and NPV estimates for each option, as well as analysis of results and corresponding recommendations.

SERVICES
Prime Consultant | Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Size: Low carbon district energy study | Due diligence engineering report | Status: Completed 2018


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Assessment of district energy plant designs to serve 3 million ft2 of mixed use development |
Calculation of estimated heating, cooling and electrical loads and energy consumption for future development | Analysis of results and corresponding recommendations for optimal design | Consideration of traditional and renewable energy sources