Blue balloon rising from gray background: individuality, standing out

HH Angus is honoured to once again be named one of Canada’s Best Managed Companies for 2020. This is our second consecutive year being selected for this prestigious honour, and we want to thank our clients and employees for the important part they played in helping us achieve this national recognition. The award, now in its 27th year, distinguishes overall business performance and growth of best-in-class, Canadian-owned companies with revenues of $15 million or more.

Paul Keenan, President of HH Angus

“We are grateful for this acknowledgement of our firm’s forward-looking strategy, as well as the engagement of our employees and their ongoing commitment to technical excellence and innovation,” said Paul Keenan, President of HH Angus. “We were thrilled to be selected for this award in our first submission last year. Being recognized again this year is a testament to the ongoing commitment of our employees, and the confidence of our clients, who place their trust in us year over year. Our expansion to Vancouver underscores our growth strategy, with the opening of a permanent office to support our local and national clients in BC. And as a knowledge-based firm, we are investing in continuous learning for our staff, and in the emerging design and collaboration technologies that will allow us to deliver on our clients’ goals for their built environment.”

Tom Halpenny, General Manager and VP Operations

According to Tom Halpenny, General Manager and VP Operations: “Having just celebrated our 100th anniversary, being recognized as one of Canada’s Best Managed Companies for a second year speaks to the stability of HH Angus, to the strength of our business strategy, and the enduring relationships we have developed with clients over the years.  Those relationships are built largely on the collaborative approach and technical expertise of our staff. This is a team win, and we all share in this award.”

About Canada’s Best Managed Companies

Canada’s Best Managed Companies continues to be the mark of excellence for Canadian-owned and managed companies with revenues over 5 million. Every year since the launch of the program in 1993, hundreds of entrepreneurial companies have competed for this designation in a rigorous and independent process that evaluates their management skills and practices. The awards are granted on four levels:

  1. Canada’s Best Managed Companies new winner (one of the new winners selected each year);
  2. Canada’s Best Managed Companies winner (award recipients that have re-applied and successfully retained their Best Managed designation for two additional years, subject to annual operational and financial review);
  3. Gold Standard winner (after three consecutive years of maintaining their Best Managed status, these winners have demonstrated their commitment to the program and successfully retained their award for 4-6 consecutive years);
  4. Platinum Club member (winners that have maintained their Best Managed status for seven years or more).

Program sponsors are Deloitte Private, CIBC, Canadian Business, Smith School of Business, and TMX Group. For more information, visit:

Deloitte Canada's Best Managed Companies 2020

Canadian Business Magazine Canada's Best Managed Companies 2020

 

HH Angus Contact:
Sameer Dhargalkar | Vice President, Marketing and Business Development
HH Angus and Associates Ltd.
+l (416) 443 8200
Sameer.dhargalkar@hhangus.com
hhangus.com

A game-changer in the wireless communications industry, 5G represents the fifth generation of cellular connectivity and a significant leap forward in performance compared to 4G and LTE. However, in order to plan for its impact in industries such as healthcare, smart cities and commercial buildings, we have to understand its opportunities, limitations and design challenges.

 What is 5G?

First, it’s important to differentiate 5G from other wireless communication protocols such as Wi-Fi.

5G (along with previous standards like 3G, 4G and LTE) is a standard for wireless cellular communications, and uses licensed frequency bands which must be purchased by the carrier. Wi-Fi, on the other hand, refers to technologies commonly used for wireless local area networking – connecting users to a building or residential network which is often owned and operated by the building owner. Wi-Fi uses unlicensed frequency bands which are available for anyone to use, and which can result in an increased risk of signal interference. The new 5G standard augments existing Wi-Fi and LTE standards rather than replacing them – in fact, Wi-Fi 6 (802.11ax) is set to also dramatically change the performance of Wi-Fi communications.

With that in mind, let’s look at how 5G differs from previous generations of cellular technology:

  • Latency, or the amount of time it takes for information to travel from the sender to the receiver is reduced to a theoretical <1 millisecond end-to-end, which is on par with many wired networks. As a comparison, typical home Wi-Fi latency is 2-5 milliseconds, and cable/DSL connections can have latency up to 100 milliseconds. Reduced latency increases the responsiveness for applications like self-driving cars, and can help data speeds appear higher to the end user.
  • 5G supports a higher density of users (up to 1 million per square kilometre or 100 times the density of previous generations). This is a limitation of many existing networks and key to supporting the expansion of the Internet of Things (IoT) and the myriad connected devices carried by people all over the world.
  • Transmission speed, or the amount of data that can be sent in a given period of time, is increased from a maximum of 1Gbps with LTE to a theoretical limit of 10-100Gpbs with 5G. It is anticipated that actual speeds will be an estimated 200Mbps-1Gbps in the field, which is still significantly higher than what most users experience with LTE.
  • Ultra-high reliability of 99.999%, which translates into downtime of less than 5 minutes and 15 seconds per year, and meets the typical standard for mission-critical data centres and networks.
  • Reduced power consumption, which is key for extending the life of battery-powered field devices and IoT.

Although most users won’t notice the difference, 5G also uses different radio frequencies from past standards. Current cellular protocols typically operate on radio frequencies between 1900MHz and 2700MHz; however, 5G uses two distinctly different frequency bands: below 6GHz, which supports standard cellular connectivity (600-700MHz and 3.5GHz in Canada), and above 6GHz, which is focused on point-to-point data transfer (millimetre wave or 28-35GHz) and can only be used for line-of-sight applications. This change has implications for existing infrastructure, as radio frequency communications are highly dependent on the hardware that supports them.

When is it coming?

Frequency auctions are already happening across North America and Europe. Canadian 600MHz frequencies were auctioned off in early 2019, and higher frequencies, including 3.5GHz, are expected to be auctioned in late 2020 and early 2021. Bell Media and Rogers Communications are expected to be the major players at the 3.5GHz auction in Canada, while Ericsson, Qualcomm and other major US cellular carriers indicate that they are ready with 5G infrastructure and can deploy as soon as they own the rights to the frequencies. Some carriers in the US have already launched 5G networks on the 3.5GHz frequency band, and some frequency bands above 6GHz have been auctioned off as well, with more to come later in 2021.

What is the potential impact of 5G on the design, construction and real estate industries?

5G has the potential to support radical advances in technology, and is anticipated to become the new standard for wireless mobile connectivity. However, it doesn’t replace wired networks which still set the standard on data transfer and latency, or Wi-Fi, which uses unlicensed frequency bands to distribute wireless connectivity throughout a building, often at a significantly lower cost per gigabyte.

So where is 5G anticipated to have the greatest impact?

While typical cellular users will experience enhanced performance, better connectivity and higher data speeds, the impact of 5G will mostly be experienced by devices rather than people. Devices such as self-driving cars and robotics which must be able to analyze and react quickly to situations will benefit from the low latency of new technology, and high-bandwidth mobile applications such as virtual reality (VR) and extended reality (XR) will make use of the increased data transmission speeds. 5G also has the capability to connect to a greater number of devices and use less power than previous generations, opening up a wealth of opportunity in the effortless deployment of battery-powered, highly mobile and flexible networks of 5G sensors and devices without the need for additional wiring.

Healthcare: the reliability of 5G connections is well suited to supporting critical healthcare applications, such as continuous monitoring. Higher data transmission speeds will be instrumental in facilitating high-mobility communications for telemedicine, data collection, predictive analytics, machine learning and artificial intelligence. The ultra-low latency wireless connections will also support applications like mobile robotic surgery and virtual reality.

Commercial and Smart Buildings: the explosion of connected devices within buildings will rely heavily on the increased density of connections available under the new 5G standard. Buildings are becoming more connected, IoT devices and sensors are becoming more ubiquitous, and occupants have higher expectations around connectivity and performance. The lower power requirements of 5G also makes it easier and more cost-effective to deploy highly mobile, battery-powered devices throughout the building without significant infrastructure costs. This, along with enhanced reliability, will also support mission-critical applications such as monitoring of building systems.

Smart Cities: navigation systems and self-driving cars will benefit significantly, as will increased density of sensors and users – particularly in areas like stadiums and transit terminals. However, higher frequencies necessitate high density of end-points compared to previous generations, which could have aesthetic implications as antennas move from towers to street level.

In all of these examples, properly designed distributed antenna systems (DAS) will become increasingly critical in the extension of 5G coverage throughout buildings and other areas with limited signal coverage; however, the building itself can have a significant impact on the operation of these systems and must be carefully considered in the early stages of design.

How  do we design differently for future technologies like 5G?

When technologies change every five to ten years but buildings can last anywhere from 30 to 50 years (or even more), designing infrastructure to adapt to evolving requirements is critical to ensuring the building will be able to meet the needs of its occupants both today and for decades to come. One of the key changes with the evolution to 5G is that the new standards rely heavily on optical fiber infrastructure to achieve the required data transmission speeds, rather than traditional copper infrastructure. This means that legacy buildings may need to replace their existing infrastructure in order to deploy 5G throughout their building, and new construction should not only plan for the latest fiber infrastructure, but also install spare capacity to accommodate future generations of technology. It also means that 5G networks are not able to take advantage of Power over Ethernet (PoE) which supplies both data and power over a single cable, since PoE requires copper cable in order to deliver the power component. That being said, there are significant opportunities for PoE and other types of low-voltage distribution to work in conjunction with 5G by powering end-use devices and sensors.

From a building perspective, DAS that supports 5G requires a different topology from previous generations (known as a centralized radio access network or C-RAN topology), which may require changes to pathways and spaces compared to traditional DAS infrastructure. When designing 5G systems, it is also important to consider that higher frequencies do not penetrate buildings or obstructions as well as lower frequencies due to the inherent nature of the electromagnetic signal. Past generations such as 3G, 4G and LTE have used frequencies in the range of 1.9 to 2.6GHZ which had reasonable penetration, but the proposed 5G bands in Canada are significantly higher at 3.5GHz. While 3.5GHz provides better bandwidth and data transmission speeds than lower frequencies, it will also experience higher signal degradation and will require a higher density of antennas. This, along with the requirement for the latest fibre optic infrastructure, can create some unique challenges when performing upgrades in existing buildings which weren’t originally designed to accommodate 5G infrastructure. There are a number of solutions on the market to help ease the transition – and, in some cases, it is worth evaluating whether there are other technologies which could serve the same purpose with a lower capital investment.

Finally, the move towards more energy-efficient buildings can have a significant impact on deployment of wireless technologies of all types, and must be addressed early on in the design of the system. Many modern building materials have a negative effect on wireless signal penetration, meaning that a higher density of antennas is required to provide sufficient coverage. Additional testing may also be required after installation to optimize the system for the unique building environment.

Leveraging 5G in a Data-Connected World

5G has the potential to radically change our experience of connectivity and how we design the built environment. From smart cities to virtual reality, the world is becoming more connected every day – and technologies like 5G are playing a key part in the evolution of our environment. Designing buildings and systems to support these changing technologies in the decades to come will be critical as users increasingly expect a seamless integrated experience, no matter where they are.

Author:

Kim Osborne Rodriguez,P.Eng., RCDD

kim.osbornerodriguez@hhangus.com

The Toronto Zoo constructs a new Wildlife Healthcare Facility

The Toronto Zoo is Canada’s premier zoo and home to over 5,000 animals, including invertebrates and fish, representing 460 species from a variety of geographical regions around the world. Encompassing approximately 710 acres, the Toronto Zoo is Canada’s largest zoo and is divided into seven zoogeographic regions, ranging from the Americas, to Africa, Australasia and Eurasia.

The campus includes numerous support facilities dedicated to animal care, operations, maintenance and veterinary services. With the existing veterinary facilities dating back to 1974, the Toronto Zoo recognized the need for redevelopment and expansion. The mandate for the new Wildlife Health Centre is to provide a state-of-the-art facility for veterinary services, that will further the Toronto Zoo’s commitment to wildlife health, nutrition, species survival research, conservation and education.

Planning for the new centre commenced in 2011 with Diamond Schmitt Architects, in collaboration with animal healthcare specialists Design Level, leading the team and preparing the architectural design for the new facility.

With a total gross area of 32,000 sq. ft., the new two-storey building would be located in the centre of the Toronto Zoo’s existing animal support complex and would be constructed in the footprint of the existing veterinary services building. Adjacent service buildings, including the existing Research, Animal Holding, Quarantine, and Conservation and Biology facilities, would connect to the new Wildlife Health Centre.

Design considerations

The functional program for the new centre would have to meet a variety of objectives, including: meeting the needs of the different animal species, taking into account diverse environmental requirements for the various habitats, providing a layout that promotes the effective delivery of ongoing healthcare services and meeting the requirements of the veterinary professionals who perform these services. Eric Lucassen, Project Architect at Diamond Schmitt, notes, “Working with the Toronto Zoo to create functional programming that supports animal healthcare, while meeting the unique habitat requirements for the various animals, involved a detailed planning process.”

The facility program for the Wildlife Health Centre is split over two floor levels and consists of animal treatment and surgical areas, diagnostic imaging, an intensive care unit, laboratories, animal holding areas, offices and support spaces, and a public viewing area. Animal holding areas are further divided into spaces for small and large animals, which require ceiling-high caging to provide safety for the staff.

Surgery and diagnostic imaging spaces are centrally located and are accessible via wider corridors to facilitate the easy transport of animals into these areas. A garage is located adjacent to the surgery area, and an electric hoist and hoist beam runs from the garage to the surgery area to help the transport of larger animals.

The majority of two-storey rooms have large clerestory (windows just below the ceiling) around the perimeter of the spaces. This architectural feature allows a significant amount of daylight to enter the interior of the building and creates the feeling of being in an open, natural environment. Laboratories and support spaces are located in close proximity with animal care areas to minimize travel distances for support services.

Mechanical considerations

Given the varying functionalities and diverse environmental requirements of the different spaces, a number of innovative applications of mechanical and electrical systems were incorporated in the building’s design. The holding area for fish and reptiles required that tropical temperatures be consistently maintained throughout the year, maintaining 100% relative humidity. Electric heat tracing cable, specifically modelled for the application by Tyco Thermal Controls, was installed in the slab to ensure that the temperature in the area would be maintained during winter months. While the electric heat tracing cable maintained a heat pad for reptiles, additional radiant floor heating was used to maintain the environment and create general floor comfort for animals.

Ventilation systems in animal care areas throughout the facility rely on a continuous 100% fresh air supply, with no return air, to ensure that contaminants and excrement are not circulated through the ventilation system. A heat recovery system was provided on the exhaust air system to increase energy efficiency. Animal surgery areas utilize a dedicated supply air system, which incorporate air change requirements and filtration comparable to the requirements for a human healthcare facility. By utilizing a separate, dedicated supply air system for surgery areas, energy efficiency is maintained in areas that require fewer air changes per hour.

Other energy efficient elements in the design included the use of low flow plumbing fixtures, roofing and landscaping features that promote heat island reduction for the site and the use of insulated glazing that provides an optimal balance between daylighting and heat transfer.

Electrical and lighting requirements

Unlike hospitals where patient care equipment is standard and there are prescribed standards for electrical circuiting requirements, animal care areas have speciality equipment items, and require multiple dedicated circuits and receptacles. Additionally, animal care areas were considered wet environments, due to the frequent washing that occurs after animals are returned to their habitats.

Ground fault circuit interrupter (GFCI) receptacles were used in these areas to maintain electrical safety. Lighting fixtures throughout the facility were selected to provide both illumination requirements for animal care and were vapour tight, to maintain infection control practices and protect luminaires from inadvertent spray during cleaning.

Occupancy sensors and multiple light switches were used throughout the facility to give users a wide range of automatic and manual lighting control, which allow lights to be turned off when there is enough daylight present through windows and clerestory.

To avoid interference with full height cages, architectural clerestories, and to minimize the likelihood of interaction with animals, overhead mechanical and electrical services were routed outside of animal care areas and confined to corridor spaces. This created several installation coordination issues that were resolved by the contractor, via the creation of detailed interference drawings during the construction phase of the project.

Nearing completion

The project was competitively tendered and awarded to Gillam Group Inc., with construction commencing in February 2015. The new building is in the final phases of construction and is scheduled to be complete during the first quarter of 2017.

Working on an animal healthcare facility designed to accommodate a variety of different species, with diverse requirements, proved to be a unique challenge.

While healthcare standards are readily available for hospital construction, there are minimal design and construction standards available for this type of animal care facility. Environmental standards established by the Canadian Council on Animal Care and general healthcare design experience contributed to the overall design.

Furthermore, involving the users throughout the project was critical in identifying the unique needs of various animal groups. Eric Lucassen notes, “Having the Toronto Zoo’s veterinary staff provide input into specific design requirements at every step of the project helped the design team develop innovative solutions to provide an enhanced animal care environment.” CCE

 

Philip Chow, P.Eng., P.E. is a senior project manager at H.H. Angus & Associates Ltd., Philip.Chow@hhangus.com