The Toronto Zoo constructs a new Wildlife Healthcare Facility

The Toronto Zoo is Canada’s premier zoo and home to over 5,000 animals, including invertebrates and fish, representing 460 species from a variety of geographical regions around the world. Encompassing approximately 710 acres, the Toronto Zoo is Canada’s largest zoo and is divided into seven zoogeographic regions, ranging from the Americas, to Africa, Australasia and Eurasia.

The campus includes numerous support facilities dedicated to animal care, operations, maintenance and veterinary services. With the existing veterinary facilities dating back to 1974, the Toronto Zoo recognized the need for redevelopment and expansion. The mandate for the new Wildlife Health Centre is to provide a state-of-the-art facility for veterinary services, that will further the Toronto Zoo’s commitment to wildlife health, nutrition, species survival research, conservation and education.

Planning for the new centre commenced in 2011 with Diamond Schmitt Architects, in collaboration with animal healthcare specialists Design Level, leading the team and preparing the architectural design for the new facility.

With a total gross area of 32,000 sq. ft., the new two-storey building would be located in the centre of the Toronto Zoo’s existing animal support complex and would be constructed in the footprint of the existing veterinary services building. Adjacent service buildings, including the existing Research, Animal Holding, Quarantine, and Conservation and Biology facilities, would connect to the new Wildlife Health Centre.

Design considerations

The functional program for the new centre would have to meet a variety of objectives, including: meeting the needs of the different animal species, taking into account diverse environmental requirements for the various habitats, providing a layout that promotes the effective delivery of ongoing healthcare services and meeting the requirements of the veterinary professionals who perform these services. Eric Lucassen, Project Architect at Diamond Schmitt, notes, “Working with the Toronto Zoo to create functional programming that supports animal healthcare, while meeting the unique habitat requirements for the various animals, involved a detailed planning process.”

The facility program for the Wildlife Health Centre is split over two floor levels and consists of animal treatment and surgical areas, diagnostic imaging, an intensive care unit, laboratories, animal holding areas, offices and support spaces, and a public viewing area. Animal holding areas are further divided into spaces for small and large animals, which require ceiling-high caging to provide safety for the staff.

Surgery and diagnostic imaging spaces are centrally located and are accessible via wider corridors to facilitate the easy transport of animals into these areas. A garage is located adjacent to the surgery area, and an electric hoist and hoist beam runs from the garage to the surgery area to help the transport of larger animals.

The majority of two-storey rooms have large clerestory (windows just below the ceiling) around the perimeter of the spaces. This architectural feature allows a significant amount of daylight to enter the interior of the building and creates the feeling of being in an open, natural environment. Laboratories and support spaces are located in close proximity with animal care areas to minimize travel distances for support services.

Mechanical considerations

Given the varying functionalities and diverse environmental requirements of the different spaces, a number of innovative applications of mechanical and electrical systems were incorporated in the building’s design. The holding area for fish and reptiles required that tropical temperatures be consistently maintained throughout the year, maintaining 100% relative humidity. Electric heat tracing cable, specifically modelled for the application by Tyco Thermal Controls, was installed in the slab to ensure that the temperature in the area would be maintained during winter months. While the electric heat tracing cable maintained a heat pad for reptiles, additional radiant floor heating was used to maintain the environment and create general floor comfort for animals.

Ventilation systems in animal care areas throughout the facility rely on a continuous 100% fresh air supply, with no return air, to ensure that contaminants and excrement are not circulated through the ventilation system. A heat recovery system was provided on the exhaust air system to increase energy efficiency. Animal surgery areas utilize a dedicated supply air system, which incorporate air change requirements and filtration comparable to the requirements for a human healthcare facility. By utilizing a separate, dedicated supply air system for surgery areas, energy efficiency is maintained in areas that require fewer air changes per hour.

Other energy efficient elements in the design included the use of low flow plumbing fixtures, roofing and landscaping features that promote heat island reduction for the site and the use of insulated glazing that provides an optimal balance between daylighting and heat transfer.

Electrical and lighting requirements

Unlike hospitals where patient care equipment is standard and there are prescribed standards for electrical circuiting requirements, animal care areas have speciality equipment items, and require multiple dedicated circuits and receptacles. Additionally, animal care areas were considered wet environments, due to the frequent washing that occurs after animals are returned to their habitats.

Ground fault circuit interrupter (GFCI) receptacles were used in these areas to maintain electrical safety. Lighting fixtures throughout the facility were selected to provide both illumination requirements for animal care and were vapour tight, to maintain infection control practices and protect luminaires from inadvertent spray during cleaning.

Occupancy sensors and multiple light switches were used throughout the facility to give users a wide range of automatic and manual lighting control, which allow lights to be turned off when there is enough daylight present through windows and clerestory.

To avoid interference with full height cages, architectural clerestories, and to minimize the likelihood of interaction with animals, overhead mechanical and electrical services were routed outside of animal care areas and confined to corridor spaces. This created several installation coordination issues that were resolved by the contractor, via the creation of detailed interference drawings during the construction phase of the project.

Nearing completion

The project was competitively tendered and awarded to Gillam Group Inc., with construction commencing in February 2015. The new building is in the final phases of construction and is scheduled to be complete during the first quarter of 2017.

Working on an animal healthcare facility designed to accommodate a variety of different species, with diverse requirements, proved to be a unique challenge.

While healthcare standards are readily available for hospital construction, there are minimal design and construction standards available for this type of animal care facility. Environmental standards established by the Canadian Council on Animal Care and general healthcare design experience contributed to the overall design.

Furthermore, involving the users throughout the project was critical in identifying the unique needs of various animal groups. Eric Lucassen notes, “Having the Toronto Zoo’s veterinary staff provide input into specific design requirements at every step of the project helped the design team develop innovative solutions to provide an enhanced animal care environment.” CCE

 

Philip Chow, P.Eng., P.E. is a senior project manager at H.H. Angus & Associates Ltd., Philip.Chow@hhangus.com

 

It is with profound sadness that we announce the passing of our great friend and colleague, Peter Willings, Chief Engineer (Emeritus) of HH Angus and Associates.

Peter joined HH Angus in 1963 as a young engineer out of Australia.  With obvious skill and tremendous engineering knowledge and instincts, he rose steadily through the ranks to become the company’s Chief Engineer in 1987, responsible for all facets of the firm’s engineering practice, directing and advising staff engaged in the design and preparation of drawings and specifications of Mechanical and Electrical Systems, and the supervision of installations for institutional, commercial and industrial undertakings.

One of Peter’s milestone projects at HH Angus was working with Architect Rod Robbie on Toronto’s SkyDome (now the Rogers Centre).  He had previously worked with Robbie on the Canadian Pavilion at Expo 67 in Montreal. Other career highlights include winning a National Low Energy Building Design Award; the iconic Toronto Dominion Centre (shown at left); the Queen’s Park office complex; the Eaton Centre’s Dundas Tower; and a long list of hospitals, computer centres and post-secondary projects too numerous to mention.

Peter’s dedication – to engineering in general and to HH Angus and Associates in particular- is a remarkable and increasingly rare achievement. He served the firm with distinction for -  54 years, continuing to work and to make significant contributions long after his official retirement. We have been the fortunate colleagues who benefited from Peter’s insight, his innate understanding of engineering, and his vast generosity in sharing that knowledge.

He will be deeply missed.

HH Angus is pleased to be working with B+H Architects and CSO Architects out of Indianapolis on this exciting project. The Welland plant is a full-service MEP engineering role for us, including mechanical, electrical, plumbing, security, IT, vertical transportation and lighting.

WELLAND, ON, Aug. 26, 2016 /CNW/ – GE (NYSE: GE)

Premier Kathleen Wynne and the Honourable Chrystia Freeland, Federal Minister of International Trade, joined GE global executives and representatives from Welland and the Niagara Region in a ground-breaking ceremony celebrating the start of construction for GE’s multi-modal “Brilliant Factory” in Canada. The facility is expected to create 220 jobs with operations commencing in early 2018. The first phase of the investment is 65M US.

This first–of-its-kind facility in Canada will combine decades of experience building innovative industrial machines with cutting-edge data science and analytics expertise to enhance efficiency and streamline production.  The facility will initially manufacture GE Power’s reciprocating gas engines, components for compression, mechanical drive, and power generation, and manufacture components for GE transportation diesel engines. The multi-modal design enables future production expansion for other GE global businesses including Power, Oil & Gas, and Transportation.

Welland’s close proximity to the US border, availability of skilled labour and education facilities were important considerations in the location of the factory. Architectural and design companies selected by GE for the project include HH Angus, B+H Architects, CSO Architects, Lea Consulting and Thorton Tomasetti. PCL Construction is the general contractor.

Source:  Canada News Wire

The first phase of the Centre Hospitalier de l'Université de Montréal (CHUM)  is almost complete. The structural and mechanical-electrical engineers describe the challenges of designing for this massive P3 construction project on a tight urban site.

MECHANICAL AND ELECTRICAL DESIGN

By Nick Stark, P.Eng., Vice President
HH Angus & Associates
The mechanical engineering design for CHUM had to meet many challenges, not the least of which was the sheer magnitude of the project on a congested urban site. There was also a strict energy target, along with request-for-proposal (RFP) requirements that drove alternative approaches.

In spite of the challenges presented by its sheer size, the project design was completed in Revit, enabling enhanced coordination of more than 2,500 building services drawings. Over 60 MEP models had to be maintained and data driven processes were developed to manage the information. Online collaboration sessions were essential for coordinating the work between HH Angus in Toronto, the project office in Montreal, and Cannon Design offices across the U.S.

Locating the plant. Locating the heating, cooling and emergency generator plants for an urban hospital complex presents a challenge. Traditionally a plant of this size would be located at grade in a separate building where it could be isolated from the clinical functions of the hospital. However such space did not exist on the CHUM site. The initial schemes positioned the plant below grade, but the real estate proved too valuable and was needed for clinical functions.

HH Angus developed a scheme to locate the plant 80 metres in the air above the ambulatory block. The boilers and chiller share one level, and the generators and cooling towers share another. These floors sit on top of an air handling plant room, forming a volume 30 metres high, fully enclosed with louvres. With this location, the design had to overcome challenges for the mitigation of noise and vibration.

The central plant consists of six dual fuel hot water heating boilers with a total output capacity of 30,900 kW, six dual fuel steam boilers and one electric boiler totalling 47,000 kg/hr. In addition to serving the needs of CHUM, the heating plant also supplies CRCHUM, the adjacent research centre, with steam and hot water. The cooling capacity is 9,000 tons in two multistage process chillers, two centrifugal heat recovery chillers and five conventional chillers.

  • Energy saving systems. The client mandated an energy consumption target of 40% less than the ASHRAE 90.1-1999 baseline — a very aggressive target for an urban acute care hospital. Every system that consumes energy was strategically assessed against possible alternative solutions.
    The modelling target was achieved using a multi-pronged approach that incorporated:
  • space by space control of air volumes (supply and exhaust)
  • enthalpy heat recovery wheels on virtually all air handling systems
  • reduced fan energy by reducing air velocity through air handling units and ductwork
  • process cooling and chiller heat recovery systems as the primary source of low temperature reheat water
  • a condensing boiler stack economiser
  • lighting power reductions coupled with occupancy and daylighting controls
  • control strategies including supply air temperature reset.
  • In terms of environmental and energy design, the building is targeted for LEED Silver designation, with a potential for LEED Gold.

Ventilation systems and heat recovery. Ventilation in a hospital is the system that requires the most plant space, not only in terms of plant room floor area, but also for vertical shafts and ceiling space. The RFP imposed a number of requirements, including HEPA filters on all systems serving clinical areas, no air recirculation between departments, and a high level of redundancy – all with a limited air handling unit size. To meet these requirements would have required two full intermediate mechanical floors and at the same time would have severely compromised the system’s future flexibility. HH Angus worked with CHUM to develop an alternative approach.

Where the RFP required a distinct air handling unit for each department, we proposed the use of 100% outdoor air units serving multiple floors where the occupancy was similar, and demonstrated to the hospital the merits of this approach from the perspective of infection control and future flexibility.

To mitigate the energy penalty of 100% fresh air systems, we proposed enthalpy heat recovery wheels. The RFP initially prohibited these wheels, but we used our 25+ years of successful experience with the technology to demonstrate to CHUM and their compliance team that their infection control concerns could be successfully mitigated with the right components and controls. The RFP was then modified accordingly.
The RFP also mandated a standby air handling unit for each unit serving a critical care space. This solution would have required much higher capital and operating costs over the life of the building, as well as more space. We developed an alternative approach by combining a number of air handling units together into one duct system to share the redundant capacity. This solution considerably increased the overall reliability of the systems while reducing operating costs.

Lastly we demonstrated that the restriction on air handling unit size could be raised to 33,000 l/s without any practical impact. Even so, 46 air handling units are required for a total supply volume of 1,300,000 l/s.

Combining these alternative approaches in the ventilation system design resulted in many benefits, including the ability to modify the occupancy of the spaces and enable future renovations. The net result was that additional clinical floors could be constructed under the zoning height restriction, which was a key factor in developing a successful bid.

Operating suites. The 39 operating rooms (ORs) had to be spread over two floors, even with a floor plate the size of two football fields. HH Angus located a main air handling plant room on the floor immediately above to enable direct servicing of the ORs. The supply and return terminal boxes as well as the terminal humidifier for each OR is located in the plant room, reducing the need for maintenance personnel to enter the ceiling space of the sterile area.

Plumbing and medical gas. The domestic water supply in a typical hospital may consist of one or possibly two pressure zones. For CHUM, with a difference in height of 120 metres from the lowest mechanical room five floors below grade to the roof, five separate pressure zones had to be created. The scale of the medical gas system is unprecedented: over 11,000 outlets.

Electrical distribution. The project required understanding the crucial demands placed on a hospital’s electrical system and knowledge of the intent and intricacies of codes and standards. Our team designed an electrical system that is robust, reliable and resilient, and one that met the owner’s RFP requirements in a cost-effective manner.
The high voltage distribution system includes 25kV and 4160V switchgear, with four incoming Hydro Québec lines totalling 36MVA. The emergency power generation system for the CHUM complex consists of four 2.5 MW diesel generators, generating at 600V, with four 2.5 MW back-up generators producing 4160V.

Lighting, fire protection and security systems. Lighting layouts were designed to balance the aggressive LEED requirements with CHUM’s stringent requirements for light levels. To provide an atmosphere that is elder-friendly efforts were taken to ensure even illumination, with gradual changes between adjacent spaces. The lighting is controlled by a building-wide lighting control system.

The addressable two-stage fire alarm system is combined with the public address system. Two complete CACF (central alarm and control facility) rooms were provided.
The security systems include CCTV, card access, intercom, and a real-time locating system. The card access system and CCTV system are IP based using POE (power over ethernet), which minimizes the risk of down time by using a centralized UPS system.

Published in Candian consulting engineer magazine - December 2015 edition (page 10)

Click here to read the complete article