Infrastructure Ontario (IO) and Children’s Hospital of Eastern Ontario (CHEO) have announced the shortlisted teams to design, build and finance the 1Door4Care: CHEO Integrated Treatment Centre project in Ottawa.

HH Angus is providing Mechanical Engineering consulting services as part of the EllisDon Infrastructure Healthcare team which was named as one of the three teams moving on to the RFP stage for this project. The new facility will merge seven care locations into a single, state-of-the-art, purpose-built site on CHEO’s main campus and will include multi-use clinic space, a physiotherapy rehab gym, expanded mental health clinics, indoor and outdoor space where teachers and therapists combine education and therapy, secure space for children who have been abused, modern treatment rooms for kids with behavioural needs, advanced technology to enable virtual care, a physical link to the main building on campus, family support spaces, a new parking structure, and more.

A request for proposals (RFP) is expected to be issued in fall 2022.

Source link: Teams Shortlisted for 1Door4Care: CHEO Integrated Treatment Centre project

Congratulations to Tim Zhu on being chosen as one of the ‘Top 10 Under 40’ on Canadian Consulting Engineers’ annual list of outstanding young engineers.

A young engineer standing in a suit

Tim is a senior mechanical engineer and project manager in HH Angus’ fast-paced Commercial Division. Since joining the firm in 2013, he has consistently demonstrated strong technical abilities and a dedicated work ethic, often putting in extra hours to ensure clients’ work is completed with the utmost quality and care. He has also been instrumental in developing calculation tools for HH Angus, including HVAC piping and ductwork sizing tools, ASHRAE 62.1 calculation tools and more. Tim is also member of ASHRAE and enjoys the distinction of being the first HH Angus WELL APTM-accredited staff member.

Tim expresses his passion for engineering by developing standards and protocols through his work. He is a member of the HH Angus sustainability committee, the standards committee, and the calculation tools committee. Tim is currently working on overhauling HH Angus’ drafting standards to be implemented in the REVIT platform. He is also developing template control sequences and diagrams based on the ASHRAE 36 High performance Sequences of Operation for HVAC Systems. Tim regularly provides instruction and training for colleagues, including both new and experienced engineers and designers, and volunteers in University of Toronto’s Engineering & Strategies Practice course, working with students to provide real-world context to their studies.

We warmly congratulate Tim on this significant honour that publicly recognizes his outstanding efforts and qualities – well done!

To read more about this year’s Top 10 Under 40, please click here.

“Azure’s International AZ Awards recognize excellence and innovation in architecture and design, and celebrate the world’s best projects, products and ideas.”

This international design competition annually selects winners in the categories of design, architecture, landscape architecture, urban design, experiential graphic design, interiors, concepts, student work and social good/environmental leadership. The 2022 awards saw Toronto’s Mirvish Village redevelopment project winning in the Urban Design Vision category. Click here to read more about the Mirvish Village AZ Award.

Award-winning Redevelopment

Mirvish Village is rising on the site of ‘Honest Ed’s,’ a much-loved discount store that was at the heart of Toronto’s Mirvish Village neighbourhood for almost 70 years. The redevelopment is currently under construction and spans 4.5 acres, creating nearly 1 million ft2 of purpose-built rental housing and retail space.

Mirvish Village has a focus on sustainability and affordability. To achieve this, the redevelopment is incorporating a district energy system and micro-grid that will offer a resilient means of thermal energy, power, and emergency power, enabling the project to meet LEED platinum and the City of Toronto’s Tier 2 Toronto Green Standard requirements. 

HH Angus’ Role

Our Energy Division team worked closely with Creative Energy Developments to provide mechanical and electrical engineering services for the Village’s central utility plant, which includes a combined heat and power plant (CHP), a boiler plant, and a cooling plant. The CHP plant includes an 800 KW generator set with auxiliaries and heat recovery system. The generator is expected to run continuously to provide power to the complex.

Heat recovery consists of two systems: high temperature to provide heat to buildings, and low temperature to provide additional heating for a winter snow melting system and swimming pool heating. The boiler plant includes four condensing hot water boilers, with the option for two additional boilers in future. All boilers have an output of 3.1 MW.

The cooling plant includes two water-cooled chillers, operating at 1200 tons each. One is a magnetic bearing chiller with variable frequency drive (VFD), and the other is a centrifugal chiller with VFD. As well, two rooftop cooling towers at 1200 tons each have been installed. 

Central distribution piping from the plant will provide hot water and chilled water to multiple energy transfer stations, with heating, cooling, and domestic hot water heat exchanges for each building within the complex.

A photo-voltaic solar system will have a capacity of 103KW, 480V. HH Angus provided direction for locating the installation, coordinated with the PV supplier for modeling the panel direction and angle for optimal PV output, developed technical connection requirements with Toronto Hydro, and identified requirements for parallel generation with the central utility plant. Our scope also included developing thermal and electrical metering strategies within a microgrid system, and design of operation for gas-fired emergency generators in electrical peak shaving mode.

Rendering courtesy of Westbank Corp

 

Mirvish Village - AZ Awards | AZ Awards (azuremagazine.com)