Peel Regional Police  

Headquarters Renovation

The renovation project customized this building for policing and admin functions. Originally, the building had been designed for pharmaceutical research labs and support spaces. 

HH Angus was engaged to provide M&E and IMIT consulting engineering for the partial renovation of this existing Peel Regional Police facility. The building has a gross area of ~ 91,000 ft2, with the renovated area totaling ~ 70,000 ft2.

The project involved replacing two boilers and heat pumps, along with the installation of a new make-up air unit on the roof. These service the entire building’s hydronic heating, while the new make-up air unit serves the basement area. As well, part of the contract was to upgrade mechanical systems to suit new load, due to changes in office floor layout and function.

Among the challenges of the project was the requirement for multiple site surveys in order to confirm the existing equipment on site. The project was also completed under a very aggressive schedule in order to meet the targeted occupancy date.

SERVICES
Mechanical Engineering | Electrical Engineering | Lighting Design | IMIT Consulting


PROJECT FEATURES
Renovated space size: 70,000 ft2 | Status: Completed 2019


LOCATION 
Peel Region, GTA, Ontario


KEY SCOPE ELEMENTS
Extensive mechanical upgrades and replacements | Multiple site surveys to overcome lack of as-built drawings | Fast-track schedule


Exterior of Peel Regional Police Headquarters
Exterior of Peel Regional Police Headquarters

Images courtesy of CS&P Architects Inc.

TD Bank Group 

TD5 ETS CSTS Tenant Fitout

Our team worked with existing structural interferences (extensive/deep structural beams with limited openings) to identify routing for new M&E infrastructure. We also engaged in multi-discipline coordination and planning on site with contractors to find pathways/alternative methods to meet the demands of the project.

HH Angus was engaged to design a full floor fitout in Tower 5 of Toronto’s iconic TD Centre. Our scope included mechanical, electrical and lighting design services. The fitout design and construction established a new floor standard for TD Bank spaces going forward.

Our electrical scope included power distribution; open ceiling café lighting design to meet both the client’s design choices and base building standards; integration of an all-new wireless lighting control system, including occupancy, daylight, and custom dimming control; life safety systems; and infrastructure for AV & security systems.

The mechanical work consisted of a new HVAC layout to accommodate the new reflected ceiling plan design, which included the open ceiling café design, supplemental cooling systems, plumbing services, and sprinkler modifications to suit the floor layout.

Among the challenges of the project were some structural limitations. Coring restrictions necessitated a power re-design to eliminate floor monuments with cores. 

SERVICES
Mechanical Engineering | Electrical Engineering | Lighting Design


PROJECT FEATURES
Status: Completed 2019 | Fitout represented a new floor standard for TD Bank | Existing space demolished to floor plate | Structural interferences required creative solutions for routing of services


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
New HVAC layout | New lighting and control system


Interior of TD5 ETS CSTS Tenant Fitout
Interior of TD5 ETS CSTS Tenant Fitout

Images courtesy of HOK

Niagara Health System 

ICAT Strategy

“Angus Connect’s approach to developing the ICAT Design Program for the new South Niagara Hospital was both forward-looking and grounded in reality, giving us a solid foundation as we move into Stage 3 of our redevelopment project. We really appreciated their fresh perspective on emerging technology, and in-depth knowledge of the opportunities and risks inherent in these types of projects.”

Sime Pavlovic, CIO, Niagara Health

Niagara Health (NH) operates five hospitals and community care facilities in the Niagara Region, serving a diverse population of nearly half a million people and the second highest percentage of seniors aged 65+ in Ontario. The new South Niagara Hospital is expected to consolidate three of the existing sites into a state-of-the-art facility located south of Niagara Falls.

Angus Connect was engaged to help NH achieve their ICAT vision by translating the future state vision into a forward-looking and feasible ICAT design program which could be easily translated into Project Specific Output Specifications (PSOS) as part of Stage 3. Niagara Health was able to capitalize on a unique opportunity, having recently constructed the new St. Catharines Site hospital (2013) which incorporated many current ICAT solutions at the time – the lessons learned from this redevelopment project were addressed as part of the ICAT design program, along with governance and change management recommendations.

In order to complete this work, we participated in the development of the ICAT vision and principles, then developed evaluation criteria and prioritization of ICAT solutions. Our team took a novel approach to stakeholder engagement, categorizing technology options as bronze, silver or gold in order to indicate various levels of implementation and to stimulate productive discussion regarding the functional requirements and use cases for clinical, business and building systems. The output from these sessions was summarized into solution profiles which detailed system requirements, key outcomes & performance indicators, governance, change management strategies, potential risks and challenges (along with mitigation measures), and proposed scope to support Stage 3 documentation.

Finally the ICAT solutions were mapped onto an eight-year implementation plan which addressed both pre-construction and post-construction activities, in addition to those in scope for the redevelopment project. Our team also generated a comprehensive budget cost estimate which included evaluation of potential funding sources based on our previous experience working on Infrastructure Ontario and MoHLTC-funded projects.

 

SERVICES
ICAT Strategy


PROJECT FEATURES
Status: Completed 2020 | Multi-site hospital system which competes with US hospitals due to its proximity to the border | Unique opportunity to incorporate into the design program lessons learned from recent construction of St. Catharines Site hospital


LOCATION 
Niagara Region, Ontario


KEY SCOPE ELEMENTS
Angus Connect successfully delivered a detailed ICAT Design Report in less than three months, including a roadmap, equipment planning and budget cost estimates | Angus Connect presented its findings from the ICAT design at the Niagara Health Innovation Conference in February 2020


Centre hospitalier de l'Université de Montréal 

Temporary Energy Centre

The CHUM temporary energy centre was built to supply Saint-Luc Hospital with steam, cooling, heating and emergency power services during the demolition of the existing energy centre and the construction of the new CHUM hospital and its energy centre. The temporary energy centre operated until commissioning of the new permanent energy centre was completed.

HH Angus was retained to study the equipment and systems required for this installation, and to prepare the phasing plan. We were also responsible for development of the conceptual design and the detailed design, and for engineering services over the course of construction and commissioning of the provisional energy centre.

This project resulted in a very complex power plant constructed in a constrained space on top of the loading dock building. The six spiral tube boilers supplied 860 kPa (125 psig) of steam to each mechanical room serving the existing facilities at Saint-Luc Hospital, the CHUM Research Centre, the Édouard Asselin and André Viallet Pavilions. As well, provision was made for the construction activities for the new facility. The electrical supply was upgraded from 12.5kV to 25kV, with transformers distributed throughout the site.

The steam piping to each building had to be routed so as not to interfere with construction of the massive P3 CHUM mega-hospital. Provisions for future connections were made to reduce interruptions of the steam supply to the CHUM Research Centre.

Working in collaboration with the Constructor, the general contractor and the subcontractors, we were able to apply innovative design approaches to reduce the cost of the energy centre. This was achieved while maintaining the facility’s established life cycle parameters, and without compromising technical or operational quality.

A very important aspect of our work was ensuring that the connection of the new temporary energy centre and the disconnection and the decommissioning of the existing energy centre would have no impact on the day-to-day operations of the existing health care facility.

SERVICES
Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Status: Completed 2012 | Disconnection and decommissioning of existing energy centre was achieved with no impact on day to day operations of existing hospital | Innovative design approaches resulted in cost reductions for energy centre


LOCATION 
Montréal, Québec


KEY SCOPE ELEMENTS
P3 | Steam, cooling, heating and emergency power services | A very complex power plant in a constrained space | Routing of steam piping designed to avoid interference with construction of P3 mega hospital  


Exterior of Centre hospitalier de l'Université de Montréal
Interior of the energy centre Centre hospitalier de l'Université de Montréal

CREIT 

Bloor-Dundas District Energy Feasibility Study

HH Angus was engaged to conduct a feasibility study for a Low Carbon District Energy Plant serving a new, three million square foot mixed use residential and commercial development along Bloor Street in Toronto.

The full development is being implemented in several stages over ten years. HH Angus provided Prime Consultant and Mechanical and Electrical Engineering services, and developed a conceptual framework for the study.

The study considered a combination of traditional and renewable energy sources to provide heating and cooling, reviewing a range of options that included the following:

  • Condensing hot water boilers, efficiency up to 90-95%
  • Centrifugal water-cooled magnetic bearing chillers
  • Water source heat pumps (heat recovery chillers) to provide simultaneous cooling and heating
  • Air source heat pumps to provide simultaneous cooling and heating
  • Ground source heat pump system
  • Ambient loop system
  • Sewer heat recovery system
  • Combined Heat & Power (CHP) system to generate power using a gas-fired generator and to provide heat using waste engine heat, with overall generator efficiency up to 80%. CHP can be used as backup power source and to reduce energy cost during periods of peak cooling and electrical demand.

HH Angus conducted calculations of estimated heating, cooling and electrical loads, plus energy consumption for future development, establishing options for the arrangement of the District Energy plant, including provision for expansion to provide heating and cooling to future developments in the neighbourhood.

Our study scope also included tentative District Energy plant layout and area requirements, capital budget, operating costs and NPV estimates for each option, as well as analysis of results and corresponding recommendations.

SERVICES
Prime Consultant | Mechanical Engineering | Electrical Engineering


PROJECT FEATURES
Size: Low carbon district energy study | Due diligence engineering report | Status: Completed 2018


LOCATION 
Toronto, Ontario


KEY SCOPE ELEMENTS
Assessment of district energy plant designs to serve 3 million ft2 of mixed use development |
Calculation of estimated heating, cooling and electrical loads and energy consumption for future development | Analysis of results and corresponding recommendations for optimal design | Consideration of traditional and renewable energy sources